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Disclaimer

This document contains images obtained by routine
Google Images searches. Some of these images may
perhaps be copyright. They are included here for
educational noncommercial purposes and are considered
to be covered by the doctrine of Fair Use. In any event
they are easily available from Google Images.

It’s not feasible to give full scholarly credit to the
creators of these images. We hope they can be satisfied
with the positive role they are playing in the educational
process.
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Smartphones are Spreading Everywhere
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24/7 Deluge Spawns Global Computational Services
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Cloud Paradigm

Cloud Paradigm:

I Billions of smart devices each drive queries to cloud servers

I Millions of business relying on cloud for all needs

Symbiosis of cloud and economy is lasting and disruptive.
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Explosion of Computational Resources

Cloud Paradigm:

I Billions of smart devices each drive queries to cloud servers

I Millions of business relying on cloud for all needs

Symbiosis of cloud and economy is lasting and disruptive.

Cloud provides any user same-day delivery:

I Tens to hundreds of thousands of hours of CPU

I Pennies per CPU hour

Any user can consume 1 Million CPU hours over a few days for a
few $10K’s.
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Stack Paradigm

Stack Paradigm:

I Organizations combine software components from other
providers in a stack

I Massive new capabilities emerge by hybridizing components

Examples:

I Uber

I Netflix relies on AWS

I Snap, Dropbox etc. small teams

D Donoho/ H Monajemi Stats 285 Stanford Lecture 10: Looking Back/Looking Ahead



The Smartphone Discontinuity
The Computing Discontinuity

A Look Back
AWS in the News: Fall 2017

A Look Ahead
Conclusion

Explosion of Convenience

Any user can deploy and control massive computational resources
from a well-chosen stack of applications/libraries/services.
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A Look Back, 2

I In Lecture 03, Eric Jonas showed how AWS Lambda creates
new opportunities for research in computational science

I In Lecture 05, Percy Liang showed how
Codalab+CodaWorksheets can run experiments and
challenges on AWS/Azure/GCP

I In Lecture 07, Riccardo Murri showed how to make private
clusters on AWS/Azure/GCP

I In Lecture 08, Andy Konwinski showed how to run large
workflows painlessly on DataBricks(AWS)

I In Lecture 09, Hatef Monajemi told us that hybridizing
ClusterJob+ElastiCluster can do pushbutton ML on
AWS/Azure/GCP
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A Look Back 3: Emergent Phenomena

The Rise of ...

I Prediction Challenges

I Software Frameworks

I Hyperparameter Search

I Workflows as Objects

I Equivalence of Efficiency, Reproducible, Painless computing
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A Look Back 4: Lessons from Deep Learning

1. Researchers who tweak more often, win more often!

2. If easier to implement tweaks and faster to evaluate them,
more likely to win!

3. Successful Research Environment
I Easy to tweak models
I Easy to score tweaks
I Fast to score tweaks

4. Successful researchers perpetually motivated by
Game-ification: tweaking, scoring, winning.

5. Easier to stay motivated when easier and more comfortable to
play the game.

I Elegant expression of tweaks
I Rapid turn-around for scoring
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A Look Back 5: Framework Wars

The real action is all in frameworks

1. Dream up, test, and publish better ...
I Types of models
I Types of tweaks
I Properties for evaluation

2. Implement better frameworks ...
I More elegant expression of models, tweaks
I Distributed Learning across clusters
I Smoother collection and analysis of results
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AWS is Eating the world: Stock Market
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AWS Services Are Ubiquitous
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AWS Services are Proliferating
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AWS Impact on Machine Learning, I
ImageNet dataset

I 14,197,122 labeled images
I 21,841 classes
I Labeling: more than a year of human effort via Amazon

Mechanical Turk
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AWS Impact on Machine Learning, II
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Impact on Machine Learning, III
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Impact on Machine Learning, III
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AWS is Eating the World
AWS Services are Ubiquitous
New AWS Services are Proliferating
AWS Impact on Machine Learning

Impact on Machine Learning, IV
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AWS is Eating the World
AWS Services are Ubiquitous
New AWS Services are Proliferating
AWS Impact on Machine Learning

AWS validates Stats 285 thesis

AWS perceives massive demand for

I Massive scale

I Convenience

I Hygiene

I Standardization of workflows
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Cross-Study Reproducibility in Clinical Trails
Cross-Methodology Reproducibility in Observational Studies

Future Science will ...

I View Science itself as data

I Test new methodology against historical corpus of science

I Measure success of end-to-end pipelines

Google: ’50 Years of Data Science Donoho’

Two Examples below

I Cross-study performance of pipelines

I Cross-methodology performance of pipelines
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Article

comparative Meta-analysis of Prognostic Gene Signatures for 
late-Stage Ovarian cancer
Levi Waldron, Benjamin Haibe-Kains, Aedín C. Culhane, Markus Riester, Jie Ding, Xin Victoria Wang, Mahnaz Ahmadifar, 
Svitlana Tyekucheva, Christoph Bernau, Thomas Risch, Benjamin Frederick Ganzfried, Curtis Huttenhower, Michael Birrer, 
Giovanni Parmigiani

Manuscript received February 24, 2013; revised January 13, 2014; accepted January 29, 2014.

Correspondence to: Giovanni Parmigiani, PhD, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, 
Boston, MA 02115 (e-mail: gp@jimmy.harvard.edu).

 Background Ovarian cancer is the fifth most common cause of cancer deaths in women in the United States. Numerous gene 
signatures of patient prognosis have been proposed, but diverse data and methods make these difficult to com-
pare or use in a clinically meaningful way. We sought to identify successful published prognostic gene signatures 
through systematic validation using public data.

 Methods A systematic review identified 14 prognostic models for late-stage ovarian cancer. For each, we evaluated its 
1) reimplementation as described by the original study, 2) performance for prognosis of overall survival in inde-
pendent data, and 3) performance compared with random gene signatures. We compared and ranked models 
by validation in 10 published datasets comprising 1251 primarily high-grade, late-stage serous ovarian cancer 
patients. All tests of statistical significance were two-sided.

 Results Twelve published models had 95% confidence intervals of the C-index that did not include the null value of 0.5; 
eight outperformed 97.5% of signatures including the same number of randomly selected genes and trained on 
the same data. The four top-ranked models achieved overall validation C-indices of 0.56 to 0.60 and shared anti-
correlation with expression of immune response pathways. Most models demonstrated lower accuracy in new 
datasets than in validation sets presented in their publication.

 Conclusions This analysis provides definitive support for a handful of prognostic models but also confirms that these require 
improvement to be of clinical value. This work addresses outstanding controversies in the ovarian cancer litera-
ture and provides a reproducible framework for meta-analytic evaluation of gene signatures.

  JNCI J Natl Cancer Inst (2014) 106(5): dju049 

Ovarian cancer is the most lethal gynecological cancer and a 
leading cause of cancer deaths among women, with more than 
15 000 deaths per year in the United States (1). A  majority of 
patients present with late-stage, high-grade disease, and the abil-
ity to distinguish biologically or clinically within this group is 
limited (2). Numerous efforts to develop molecular signatures 
that better stratify survival within this group of patients have 
generated an enormous archive of genomic discovery data; how-
ever, it remains difficult to assess which, if any, of these efforts 
have generated reproducible and clinically relevant prognostic 
models.

Review papers have provided valuable summaries of proposed 
genomic prognostic models for ovarian cancer (3–7) but do not 
address the validity of published models when independently 
applied to new data. Independent validation can be addressed 
through meta-analysis by using archives of published data, but 
such efforts may be hindered by incomplete availability of original 
genomic and associated clinical data (8), diverse technologies and 

formats of published data (9), and lack of reproducibility of pub-
lished models (10,11). However, sufficient archives of microarray 
data are now available to evaluate published prognostic models by 
meta-analysis.

We therefore undertook a systematic validation of gene expres-
sion–based prognostic models for late-stage, high-grade serous 
ovarian cancer published between 2007 and 2012 (12–24) in a 
database of 10 clinically annotated microarray datasets totaling 
1251 patients (12,14–18,20,23,25,26). This assessment addresses 
several important issues for the translation of genomics to clinical 
application: 1) the accuracy of published prognostic models when 
applied to new, independent datasets; 2)  the impact of choice of 
validation datasets on apparent prognostic accuracy; 3)  similari-
ties between independently developed prognostic models; 4) the 
influence of popular datasets on the literature; and 5) the recent 
observation that random gene signatures may have prognostic 
ability (27). This study additionally addresses published contro-
versies in the ovarian cancer prognostic signature literature by 
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quantitatively placing these studies within their broader context. 
These controversies include the quality of a highly cited and fre-
quently reused dataset associated with a now-retracted article (26) 
and the clinical relevance of a DNA damage repair-based prognos-
tic model (19,28). Finally, evaluation of these prognostic models 
uncovered common pathways enriched for correlation with the 
most accurate prognostic models.

Methods
Our evaluation combines four major phases: 1) systematic literature 
review for selection of both eligible genomic datasets and eligible 
prognostic models; 2) transparent reimplementation of risk predic-
tion models identified by the literature review; 3) evaluation of the 
reproducibility of models in independent data; and 4) a multistudy 
validation of the published models using meta-analytic methods. 
We performed statistical analyses using R 3.0.1 (R foundation for 
Statistical Computing, Vienna, Austria) and Bioconductor 2.12 
(Bioconductor Core Team, Seattle, USA). Specific libraries are dis-
cussed within this section.

Eligibility Criteria and Implementation of 
Prognostic Models
We considered prognostic models  that: were claimed to have 
prognostic value for cohorts of late-stage serous ovarian can-
cer patients; generated a continuous risk score (specifically, this 
excluded discrete “subtyping”); were based on the expression of 
multiple mRNA transcripts; were developed from a training set 
of at least 40 patients; were either trained or tested using micro-
array data; were fully specified or could be reimplemented from 

original data and methods, and were published within the 5 years 
preceding June 30, 2012. Published models were reimplemented 
as described by the original publication. Some modifications to 
the original models were necessary for cross-platform valida-
tion, including translating probe set identifiers to standard gene 
symbols and removing platform-specific thresholds. Where pos-
sible, these reimplementations were verified by reproducing a 
result from the original publication of the model (Table 1; full 
code and details provided in the Supplementary Data, available 
online).

Eligibility Criteria for Datasets and Samples
We used microarray data in the public domain that provided: micro-
array expression data for collections of primary patient tumors 
consisting mostly or entirely of late-stage, high-grade, serous his-
tology; continuous time to death with censoring information, and 
at least 40 samples and 15 deaths after removing early-stage, low-
grade, or nonserous histology samples. Samples missing individual 
annotation for stage, grade, or histology were not excluded, so 
long as these could be assumed to be likely late-stage, high-grade, 
serous samples. The analysis was repeated excluding any samples 
not explicitly labeled as late-stage, high-grade, serous histology to 
assess the impact of incompletely annotated samples on summary 
results.

Information Sources
Prognostic models were identified through PubMed searches, 
review articles (3–7), and searches of publicly available data (29). 
The Dressman 2007 article (26) was retracted in 2012 (30) because 
incorrect chemotherapy response annotations, initially discovered 
by Baggerly and Coombes (31), compromised results of the initial 
paper. The survival data used for this analysis were unchallenged 

Table 1. Reproducibility of the 14 published models for prognosis of late-stage epithelial ovarian cancer selected for meta-analysis*

Model

Reproducibility†

Model provided Training data available Validation data available Verified implementation

TCGA11 (12) Yes Yes Yes Yes
Denkert09 (13) Yes Yes Yes Yes
Bonome08_263genes (14) Yes Yes Yes Yes
Bonome08_572genes (14) Yes Yes Yes Yes
Mok09 (15) No Yes Yes Partially
Yoshihara12 (16) Yes — Yes Yes
Yoshihara10 (17) Yes — Yes Yes
Bentink12 (18) Yes — Yes Yes
Kang12 (19) Yes Yes Yes Partially
Crijns09 (20) No Yes No No
Kernagis12 (21) Partially Yes Yes Partially
Sabatier11 (22) Partially No No No
Konstantinopoulos10 (23) Yes — Yes Partially
Hernandez10 (24) Partially — Yes Partially

* The term “prognostic model” refers here to a list of genes along with a fully specified algorithm for producing a risk score for each patient. The term “prognostic 
signature” refers to the list of genes only. The reproducibility assessments shown here represent our ability to reimplement published models, rather than an 
assessment of reproducibility of findings of the publication.

† Aspects of model reproducibility: Model provided: We were able to implement a fully specified model using gene identifiers and coefficients provided in the 
published paper. Training data available: Primary data were available to permit development of this model using methods described by the authors. Validation data 
available: Data were available to validate our implementation by reproducing a result from the paper. Verified implementation: we were able to reproduce validation 
results from the published paper using our implementation of the model. “—“ indicates that this step was unnecessary and we did not attempt it. If we were 
able to use the fully specified model as provided in the article, then we considered developing the fully specified model from data and methods to be optional. The 
details of this process are provided as Supplementary Data (available online).
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Figure 2. Performance assessment of published risk scores. Citations for 
models and expression datasets are provided in Tables 1 and 2, respec-
tively. A) Concordance statistic (C-index) for prediction of overall sur-
vival by each of the 14 models in each of the 10 microarray datasets. 
Datasets used for training a model are shown in black; datasets used by 
the authors of a model for testing are bordered in gray. Darker shades 
of orange correspond to better predictions. C-index is expected to be 0.5 
for a random risk score, and 1.0 corresponds to a model that predicts the 
exact order of deaths correctly. Models are ordered from top to bottom 
by best to worst summary C-index, and datasets are ordered from left to 

right by average C-index for all models not trained on that dataset. That 
means prediction models in general validated well in Dressman et al. 
dataset (26) and models that validated in multiple other datasets did not 
validate in The Cancer Genome Atlas (TCGA, (12)) or Crijns dataset (20). 
B) Summary C-index for each model with training datasets excluded 
(orange boxes) and with test sets presented by the authors also excluded 
(vertical bars). 95% confidence intervals (CI; gray lines) were obtained 
from resampling of cases. The top-ranked model is that proposed by the 
TCGA Consortium, and this dataset is conversely one of the most dif-
ficult for prediction by other models not using it for training.

average validation statistic (P = .07, log-rank test). No evidence of 
confounding was seen in the other four datasets for which a batch 
variable was available. Conversely, no dataset stood out as produc-
ing exceptionally low validation statistics, although the only dataset 
generated by a two-color custom microarray produced the lowest 
mean C-index (C = 0.53) (20).

Functional Interpretation of Prognostic Models
We clustered the 14 models by correlation of risk scores across all 
1251 patients and compared this with the overlap of genes used by 
the models (Figure 3). Gene overlap was no more than approxi-
mately 2% for any two models (Jaccard index). However, the cor-
relation between risk predictions was greater than 0.6 between 
the models of Denkert et al. (13), Bentink et al. (18), and Kernagis 
et  al. (21) and greater than 0.55 for the top-ranked TCGA (12) 
and fourth-ranked 263-gene Bonome et al. (14) models. Gene set 
enrichment analysis of genes ranked by correlation to risk scores 
identified distinct KEGG pathways (Supplementary Figures 4 and 
5, available online). As expected, extracellular matrix pathways are 
enriched for genes with high correlations to the Bentink et al. (18) 
angiogenesis score, and DNA replication and base excision repair 
gene sets are enriched for genes with high correlation to the Kang 
et  al. (19) DNA damage repair pathways score. Several immune 
response pathways are enriched for genes correlated to all four 
top-ranked risk scores (Supplementary Figure 4, available online). 
These immune response pathways contained large numbers of 
highly coexpressed human leukocyte antigen genes, meaning that 

high expression of these genes corresponded with good progno-
sis according to these models. The allograft rejection pathway 
is shown as a representative example in Supplementary Figure 5 
(available online).

Influence of Validation Datasets
To assess whether the choice of validation datasets affects valida-
tion results, we compared the performance of models in valida-
tion datasets presented in their publication to performance in new 
datasets. Under the null hypothesis of no influence, validation sets 
presented by authors are expected to be no better or worse than 
other validation datasets. The summary performance of eight of 10 
models was better in author-selected validation datasets (Figure 4) 
than other datasets, providing marginal evidence of such influence 
in the literature (P = .06, Wilcoxon signed-rank test).

Prognostic Performance of Gene Signatures Relative to 
Random Gene Signatures
We draw a distinction between a prognostic tool, as an algorithm 
that produces a risk score given an expression profile (and in most 
cases requires coefficients), and a prognostic signature, as a list of 
genes associated with patient outcome or with other related bio-
logical features (such as angiogenesis or DNA damage repair). We 
assessed prognostic performance of the gene signatures used in 
each published model independently of the original training dataset 
or proposed algorithm. Each gene signature was used to train and 
evaluate models on all combinations of training and independent 
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Figure 4. Publication bias toward prognostic models with favorable 
independent validation. Citations for models are provided in Table 1. 
We calculated the meta-analysis concordance statistic (C-index) for 
each model whose publication presented independent validation 
using 1) only test datasets presented in the original publication of the 

model and 2) all available data not used in the original publication. 
Error bars indicate 95% confidence intervals for the C-index. Of 10 
models that presented validation in test data, eight performed better 
in these test datasets than in datasets not used in the original publica-
tions (P = .06, two-sided Wilcoxon signed-rank test).

Figure 3. Similarity of risk predictions, models, and gene signatures. 
Citations for models are provided in Table 1. A) Quantile normalized 
risk predictions from each model for all 1251 patients in the database. 
Yellow indicates high predicted risk, and blue indicates low predicted 
risk. Models and patients are clustered by Spearman correlation of 
predicted risk. Patients who died within 4 years are labeled in black 
along the top. B) Spearman correlation heatmap of the risk scores 

produced by the 14 models, along with similarity of genes repre-
sented in each model, as calculated by Jaccard index (intersection 
divided by union of genes). Although the highest overlap between 
gene signatures is just greater than 2%, some of these models pro-
duce highly correlated risk predictions (ρ > 0.5). Gene overlap and cor-
relation between risk scores are associated (ρ = 0.40; 95% confidence 
interval = 0.21 to 0.56).
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Abstract

Threats to the validity of observational studies on the effects of interventions
raise questions about the appropriate role of such studies in decision making.
Nonetheless, scholarly journals in fields such as medicine, education, and the
social sciences feature many such studies, often with limited exploration of
these threats, and the lay press is rife with news stories based on these studies.
Consumers of these studies rely on the expertise of the study authors to
conduct appropriate analyses, and on the thoroughness of the scientific peer-
review process to check the validity, but the introspective and ad hoc nature
of the design of these analyses appears to elude any meaningful objective
assessment of their performance. Here, we review some of the challenges
encountered in observational studies and review an alternative, data-driven
approach to observational study design, execution, and analysis. Although
much work remains, we believe this research direction shows promise.
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OMOP	  2010/2011	  Research	  Experiment	  
OMOP Methods Library 

Inception 
cohort 

Case control 

Logistic 
regression 

Common Data Model 

Drug

Outcome ACE In
hibito

rs
 

Amph
oter

ici
n B

 

Antib
iotic

s: 
ery

throm
yc
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, 

su
lfo

na
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s, 
tet

rac
yc

lin
es

Antie
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epti
cs

: 

ca
rba

maz
epin

e, 
phe
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toi

n

Ben
zo

diaz
ep

ines
 

Beta
 block

ers
 

Bisp
hos

ph
onate

s: 

ale
nd

ron
ate

Tric
yc

lic
 an

tid
ep

res
sa

nts 

Typ
ica

l a
ntip

syc
hoti

cs
 

Warfa
rin

 

Angioedema 
Aplastic Anemia 
Acute Liver Injury 
Bleeding 
Hip Fracture 
Hospitalization 
Myocardial Infarction 
Mortality after MI 
Renal Failure 
GI Ulcer Hospitalization 

Legend Total
2
9

44

True positive' benefit
True positive' risk
Negative control'

•  10 data sources  
•  Claims and EHRs 
•  200M+ lives 
•  OSIM  

•  14 methods  
•  Epidemiology designs  
•  Statistical approaches 

adapted for longitudinal 
data 

•  Open-source 
•  Standards-based 

Positives: 9 
Negatives: 44 
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Criteria	  for	  posi:ve	  controls:	  
•  Event	  listed	  in	  Boxed	  Warning	  or	  Warnings/Precau:ons	  sec:on	  of	  ac:ve	  FDA	  
structured	  product	  label	  

•  Drug	  listed	  as	  ‘causa:ve	  agent’	  in	  Tisdale	  et	  al,	  2010:	  “Drug-‐Induced	  Diseases”	  
•  Literature	  review	  iden:fied	  no	  powered	  studies	  with	  refu:ng	  evidence	  of	  effect	  

Ground	  truth	  for	  OMOP	  2011/2012	  experiments	  

Positive	  
controls

Negative	  
controls Total

Acute	  Liver	  Injury 81 37 118
Acute	  Myocardial	  Infarction 36 66 102
Acute	  Renal	  Failure 24 64 88
Upper	  Gastrointestinal	  Bleeding 24 67 91
	  	  	  	  Total 165 234 399

isoniazid	  

indomethacin	  

ibuprofen	  
sertraline	  

Criteria	  for	  nega:ve	  controls:	  
•  Event	  not	  listed	  anywhere	  in	  any	  sec:on	  of	  ac:ve	  FDA	  structured	  product	  label	  
•  Drug	  not	  listed	  as	  ‘causa:ve	  agent’	  in	  Tisdale	  et	  al,	  2010:	  “Drug-‐Induced	  Diseases”	  
•  Literature	  review	  iden:fied	  no	  powered	  studies	  with	  evidence	  of	  poten:al	  posi:ve	  
associa:on	  

flu:casone	  

clindamycin	  

loratadine	  
pioglitazone	  
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Performance	  across	  methods,	  by	  database	  

Data source 

A
U

C
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D
R

R
<=

1.
25

 

•  All	  self-‐controlled	  designs	  (OS,	  ICTPD,	  SCCS)	  are	  consistently	  at	  or	  near	  the	  top	  of	  
performance	  across	  all	  outcomes	  and	  sources	  

•  Cohort	  and	  case-‐control	  designs	  have	  comparable	  performance,	  consistently	  lower	  
than	  all	  self-‐controlled	  designs	  

•  Substan:al	  variability	  in	  performance	  across	  the	  op:mal	  sejngs	  of	  each	  method	  
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Data	  source	   Acute	  kidney	  
injury	  

Acute	  liver	  
injury	  

Acute	  
myocardial	  
infarcCon	  

GI	  bleed	  

MDCR	  
	  
(0.92)	  

	  
(0.76)	  

	  
(0.84)	  

	  
(0.86)	  

CCAE	  
	  
(0.89)	  

	  
(0.79)	  

	  
(0.85)	  

	  
(0.82)	  

MDCD	  
	  
(0.82)	  

	  
(0.77)	  

	  
(0.80)	  

	  
(0.87)	  

MSLR	  
	  
(1.00)	  

	  
(0.84)	  

	  
(0.80)	  

	  
(0.83)	  

GE	  
	  
(0.94)	  

	  
(0.77)	  

	  
(0.89)	  

	  
(0.89)	  

Data	  source	   Acute	  kidney	  
injury	  

Acute	  liver	  
injury	  

Acute	  
myocardial	  
infarcCon	  

GI	  bleed	  

MDCR	  
OS	  
(0.92)	  

OS	  
(0.76)	  

OS	  
(0.84)	  

OS	  
(0.86)	  

CCAE	  
OS	  
(0.89)	  

OS	  
(0.79)	  

OS	  
(0.85)	  

SCCS	  
(0.82)	  

MDCD	  
OS	  
(0.82)	  

OS	  
(0.77)	  

OS	  
(0.80)	  

OS	  
(0.87)	  

MSLR	  
SCCS	  
(1.00)	  

OS	  
(0.84)	  

OS	  
(0.80)	  

OS	  
(0.83)	  

GE	  
SCCS	  
(0.94)	  

OS	  
(0.77)	  

ICTPD	  
(0.89)	  

ICTPD	  
(0.89)	  

Data	  source	   Acute	  kidney	  
injury	  

Acute	  liver	  
injury	  

Acute	  
myocardial	  
infarcCon	  

GI	  bleed	  

MDCR	  
OS:	  401002	  
(0.92)	  

OS:	  401002	  
(0.76)	  

OS:	  407002	  
(0.84)	  

OS:	  402002	  
(0.86)	  

CCAE	  
OS:	  404002	  
(0.89)	  

OS:	  403002	  
(0.79)	  

OS:	  408013	  
(0.85)	  

SCCS:	  1931010	  
(0.82)	  

MDCD	  
OS:	  408013	  
(0.82)	  

OS:	  409013	  
(0.77)	  

OS:	  407004	  
(0.80)	  

OS:	  401004	  
(0.87)	  

MSLR	  
SCCS:	  1939009	  
(1.00)	  

OS:	  406002	  
(0.84)	  

OS:	  403002	  
(0.80)	  

OS:	  403002	  
(0.83)	  

GE	  
SCCS:	  1949010	  
(0.94)	  

OS:	  409002	  
(0.77)	  

ICTPD:	  3016001	  
(0.89)	  

ICTPD:	  3034001	  
(0.89)	  

Op:mal	  methods	  (AUC)	  by	  outcome	  and	  data	  source	  

•  Self-‐controlled	  designs	  are	  op:mal	  across	  all	  outcomes	  and	  all	  sources,	  but	  the	  
specific	  sejngs	  are	  different	  in	  each	  scenario	  

•  AUC	  >	  0.80	  in	  all	  sources	  for	  acute	  kidney	  injury,	  acute	  MI,	  and	  GI	  bleed	  
•  Acute	  liver	  injury	  has	  consistently	  lower	  predic:ve	  accuracy	  
•  No	  evidence	  that	  any	  data	  source	  is	  consistently	  beger	  or	  worse	  than	  others	  
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