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Nobody knows what data science is

Statistics: Machine learning:




We are proposing to show you what data science is...

studies




— all relevant methods

— datasets considered canonical for certain task

— control parameters

— observables of interest




Algorithm 1: Description of XYZ experiment

Input : methods X, datasets Y, control parameters Z
Output: observables W

foreach method x € X do

2 foreach dataset y € Y do

foreach control parameter z € Z do
/* run experiment and collect observables
Wi(x, y,z) = Experiment(x, y, z)

—

w

end

end

e - Y

end

Findngy



Navigating the space of finding

Change plot size: - +
Change circle size: - +

Choose control parameters Z or observables W:
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For each method X and dataset Y, V1 is plotted
against V2 and colored with V3,
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Data science needs to be...

e Practical findings that explain reality,
NOT theorems!
e Reliable comprehensive insights,

NOT poetry,
NOT cherry picking,
NOT inadequate experimentation.

Data science needs
to be XYZ!




People are groping for this

Comparative Meta-analysis of Prognostic Gene Signatures for
Late-Stage Ovarian Cancer

Levi Waldron, Benpmin Haibe-Kains, Aedin C. Cuhane, Markus Riester, Jie Ding, Xin Victoria Wang, Mahnaz Ahmadifar,
Svitlana Tyekucheva, Christoph Bernau, Thomas Risdh, Benjamin Frederick Ganziried, Curtis Huttenhower, Michaol Barer,
Giovanni Parmigian
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Background

Ovarlan cancer is the fifth most common cause of cancer deaths in women in the United States. Numerous gene
signatures of patient prognosis have been proposed, but diverse data and methods make these difficult to com-
pare or use in a clinically meaningful way. We sought to identify successful published prognostic gene signatures
through systematic validation using public data.

A systematic review identified 14 prognostic models for late-stage ovarian cancer. For each, we evalusted its
1) reimplementation as described by the original study, 2) performance for prognosis of overall survival in inde-
pendent data, and 3) performance compared with random gene signatures, We compared and ranked models
by validation in 10 published datasets comprising 1251 primarily high-grade, lote-stage serous ovarian cancer
patients. All 1ests of statistical significance were two-sided.

Twelve published models had 95% confidence intervals of the C-index that did not include the null value of 0.5;
eight outperformed 97.5% of signatures including the same number of randomly selected genes and trained on
the same data. The four top-ranked models achieved overall validation C-indices of 0.56 to 0.60 and shared anti-
correlation with expression of immune response pathways. Most models demonstrated lower accuracy In new
datasets than in validation sets presented in their publication.



Validation Statistics for 14 Models in 10 Datasets
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Deep Learning 7



Understanding deep learning requires rethinking generalization
https://arxiv.org>cs v
by C Zhang - 2016 - Cited by 303 - Related articles

Perfect score on the ICLR reviews

ICLR 2017 best paper award

2 Free hsues of Forbes

What You Need To Know About One Of The Most
Talked-About Papers On Deep Learning To Date

Q000




Rethinking

Generalization
by Zhang et. al

CIFAR10,
ImageNet

MLP, AlexNet,
Inception

% randomized
labels

number of epochs
until perfect fit,
test error at epoch
of perfect fit

S

Could be done
on more
datasets and
methods
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Rethinking

Generalization

by Zhang et. al

Importance of
Single Direction
Generalization

Morcos et. al

Are GANSs

Created Equal?

Lucic et. al
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Great
example!



If you want to be a data scientist...

You must do research this way

You must evaluate others this way
And...

You must accept this is the only way,
otherwise your work will be irrelevant



Pywren
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