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Grad school was embarrassing(-ly parallel)



| hate computers”
—Eric Jonas, 2017



'm Interested in how computer science and
machine learning can improve
iNstrumentation and measurement

Signal
processing

- g

Imaging
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Adaptive Optics



PREVIOUSLY, AT
COMP IMAGING

x Why is there no
A ‘‘cloud button’?

When to use the Cloud ?

Jata
Large amounts of data. Can't store locally
-Shared data across users

-Long term storage
Compute

Need lts of CPUs for o
Varying o
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Jimmy McMillan
-ounder and Chairman
The Rent I1s Jloo Damn High Party

T he cloud Is too
damn hard!

;)

Less than half of the graduate
students In our group have
ever written a

Spark or Hadoop |ob



EC2Instances.info Easy Amazon EC2 Instance Comparison

eC2 RDS

o 1 it - T

Filter: Min Memory (CB): Compute Units:
Name APl Name
Cluster Compute Eight Extra Large cc2.8xlarge
Cluster GPU Quadruple Extra Large cgl.4xlarge
T2 Nano 2.nanc
T2 Micro 2.micro
T2 Small 2.small
T2 Medium 2. medium
T2 Large 2 large
M4 Large mé.large
M4 Extra Large m4.xlarge
M4 Double Extra Large md 2xlarge
M4 Quadruple Exira Large mé.axlarge
M4 Deca Extra Large m4.10x/arge
M4 16Gx/arge m4.16x/arge
G4 High-CPU Large c4 large
C4 High-CPU Extra Large c4d . xlarge
C4 High-CPU Double Extra Large c4.2xlarge
C4 High-CPU Quadruple Extra Large c4.4xlarge
C4 High-CPU Eight Extra Large c4.8xlarge
P2 Extra Large p2.xlarge
F2 Eight Exra Large p2.8xlarge
P2 16xlarge pZ.16xlarge
G2 Double Extra Large g2.2x/arge
G2 Eignt Extra Larce g2.8x'arge
X1 16xarge X1.16x arge
X1 32«large x1.32x/arge
R3 High-Memory Large r3.large
R3 High-Memory Extra Large r3.xlarge
R3 High-Memory Double Extra Large r3.2xlarge
R3 High-Memery Quadruple Extra Large r3.4xlarge
R3 High-Memory Eight Extra Large r3.8xlarge
12 Exira Large i2.xlarge
12 Doutle Extra Large i2.2xlarge
12 Quadruple Extra Larae 12 .4%larae

Storage (CB):

160.0 GB
266.0 GB
3.75GB
785G8
15.0GB
300GB
60.0GB
61.0G8B
488.0GB
7320 GB
15.0G8B
60.0GB
976.0GB
1952.0 GB
1525 GB
305GB
61.0GB
122.0GB
2440 GB
305G8
61.0G8

1220 GRB

Computa Units (ECU) vCPUs

88 units
33.5 units
Burszable
Burs:able
Bursiable
Burstakble
Burs:able
6.5 units
13 units
26 units
53.5 units
124.5 units
188 units
3 units

16 units
31 units
62 units
132 units
12 units
94 units
188 units
26 units
104 units
174.5 units
349 units
6.5 units
13 units
26 units
52 units
104 units
14 units
27 units

53 units

32 vCPUs
18 vCPUs
1 vCPUs
1 vCPUs
1 vGPUs
2vCPUs
2 vCPUs
2 vCPUs
4 vCPUs
8 vCPUs
16 vCPUs
40 vCPUs
64 vCPUs
2 vGPUs
4 vCPUs
8 vCPUs
16 vCPUs
36 vCPUs
4 vCPUs
32 vCPUs
64 vCPUs
d vCPUs
32 vCPUs
64 vCPUs

Storage

3360.0 GB (4 * 840.0 GB)
1680.0 GE (2 * B40.0 GB)
0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

60.0 GB S5D

240.0 GB (2 * 120.0 GB SSD)
1920.0 GB SSD

128 vCPUs 384C.0 GB (2 * 1920.0 GB S5D)

2 vCPUs
4 vCPUs
8 vCPUs
16 vCPUs
32 vCPUs
4 vCPUs
d vCPUs

16 vCPUs

32.0 GB SSD
80.0 GB SSD

160.0 GB SSD

320.0 GB SSD

640.0 GB (2 * 320.0 GB SSD)
800.0 GB SSD

16C0.C GB (2 " 800.0 GB S5D)

32000 GB (< * 800.0 GB 88D

Arch
64-bit
64-bit
64-bit

32/64-bit

32/64-bit
64-bit

64-bit

64-bit

64-bit

64-bit

64-bit

64-bit

64-bit

64-bit

04-bi+

Network Parfarmance EBS Optimized: Max Bandwidth VPC Only Linux On Demand cost Linux Reserved cost Windows On Demand cost Windows Reserved cost

10 Gigabit

10 Gigabit

Low

Low to Moderate
Low to Moderate
Low ta Moderate

Low to Moderate

. Moderate
- High

High

. High

10 Gigahit
20 Gigabit

. Moderate
. High

High
High

. 10 Gigabit

High
10 Gigabit

. 20 Gigabit

High
10 Gigabit

. 10Gigabit

20 Gigabit

Moderate

. Moderate
. High

High

* 10 Gigabit
. Moderate

High
Hiah

N/A

N/A

N/A

N/A

N/A

N/A

N/A

450.0 Mbps
750.0 Mbps
1000.0 Mbps
2000.0 Mtps
4000.0 Mbps
10000.0 Mbps
500.0 Mbps
780.0 Mbps
1000.0 Mbps
2000.0 Mbps
4000.0 Mbps
750.0 Mbps
5000.0 Mbps
10000.0 Mbps
1000.0 MEps
NAA

5000.0 Mbps
10000.0 MEbps
NAA

500.0 Mbps
1000.0 Mbps
2000.0 Mbps
NAA

500.0 Mbps
1000.0 MEbps
2000.0 Mbps

No
No
Yas
Yes
Yes
Yas
Yes
Yes
Yas
Yes
Yes
Yes
Yes
Yes
Yes
Yas
Yes
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No

No

$2.000 hourly
$2.100 hourly
$0.00€ hourly
$£0.013 hourly
$0.026 hourly
$0.052 hourly
$0.104 hourly
$0.120 hourly
$0.239 hourly
$0.479 hourly
$0.958 hourly
$2.394 nourly
$3.830 hourly
$0.105 hourly
$0.209 hourly
$0.419 hourly
$0.838 hourly
$1.675 hourly
$0.900 hourly
$7.200 hourly
$14.400 hourly
$0.650 hourly
$2.600 hourly
$6.669 hourly
$13.338 hourly
$0.166 hourly
$0.333 hourly
$0.685 hourly
$1.330 hourly
$2.660 hourly
$0.853 hourly
$1.705 nourly

23410 nourlv

$1.090 hourly
unavailable
$0.005 hourly
$0.009 hourty
$0.018 hourly
$0.036 hourly
$0.072 hourty
$0.083 hourly
$0.164 hourly
$0.329 hourty
$0.658 hourly
$1.645 hourly
$2.632 hourly
$0.078 hourly
$0.155 hourly
$0.311 hourly
$0.621 hourly
$1.242 hourly
$0.684 hourly
$5.476 hourly
$10.951 hourly
$0.474 hourly
$1.896 hourty
$4.579 hourly
$9.158 hourly
$0.105 hourly
$0.209 hourly
$0.418 hourly
$0.836 hourty
$1.672 hourly
$0.424 hourly
$0.848 hourly
$1.696 hourly

$2.570 hourly
$2.600 hourly
$0.009 hourly
$0.018 nourly
$0.036 hourly
$0.072 nourly
$0.134 hourly
$0.246 hourly
$0.491 hourly
$0.883 hourly
$1.966 hourly
$4.914 hourly
$7.862 hourly
$0.193 hourly
$0.386 hourly
$0.773 nourly
$1.546 hourly
$3.091 hourly
$1.084 nourly
$8.672 nourly
$17.344 heurly
$0.787 nourly
$2.878 hourly
$9.613 hourly
$19.226 hcurly
$0.281 hourly
$0.583 hourly
$1.045 hourly
$1.944 hourly
$3.500 hourly
$0.973 hourly
$1.946 nourly

£3.891 nourlv

$1.336 hourly
unaveilable
$0.007 hourly
$0.014 hourly
$0.032 hourly
$0.082 hourly
$0.106 hourly
$0.184 hourly
$0.386 hourly
$0.735 hourly
$1.4569 hourly
$3.672 hourly
$5.875 hourly
$0.170 hourly
$0.339 hourly
$0.679 hourly
$1.357 hourly
$2.769 hourly
$0.888 nourly
$6.948 hourly
$13.5895 heourly
$0.611 hourly
$1.979 nourly
$7.523 hourly
$15.046 hcurly
$0.238 hourly
$0.428 hourly
$0.824 nourly
$1.480 hourly
$1.989 hourly
$0.585 hourly
$1.131 hourly

22260 hnourly



# | HECLOUDIS TOODAMNHARD

» What type! what
nstance?! VWhat base
Image!?

* How many to spin up!?
What price! spot!

» walit, Wait, WAIT oh god
* now what! DEVOPS

EC2Instances.info Easy Amazon EC2 Instance Comparison

EC2 RDS

T [ e

Filter: Min Memory (GB):

Name

Cluster Compute Eight Extra Large
Cluster GPU Quadruple Extra Large
T2 Nano

T2 Micro

T2 Small

T2 Medium

T2 Large

M4 Large

M4 Extra Large

M4 Double Extra Large

M4 Quadruple Exira Large

M4 Deca Extra Large

M4 16xlarge

G4 High-CPU Large

C4 High-CPU Extra Large

C4 High-CPU Douhle Extra Large
C4 High-CPU Quadruple Extra Large
C4 High-CPU Eight Extra Large

P2 Extra Large

P2 Eight Extra Large

P2 1Bxlarge

G2 Double Extra Large

G2 Eignt Extra Large

X1 16xarge

X1 32xlarge

R3 High-Memory Large

R3 High-Memory Extra Largce

R3 High-Memery Double Extra Large
R3 High-Memory Quadruple Extra La
R3 High-Memory Eight Extra Large
12 Extra Large

12 Doutle Extra Large

12 Quadruple Extra Large

12 Eignt Extra Large

D2 Extra Large

D2 Double Extra Large

D2 Quadruple Exira Large

D2 Eight Extra Large

HI1. High IYC Quadruple Extra Large
High Storage Eight Extra Large

M3 General Purpose Medium

M3 General Pumase Large

M3 General Purpose Extra Large

Cempute Units:

APl Name
cc2.8xarge
cgl.4xlarge
2.nanc
2.micro
2.small
2.medium
2.large
mé.large
md4.xlarge
md.2xlarge

mé.4xlarge

m4.10x/arge

md.16x/arge

cd large
c4 xlarge
c4.2xlarge
c4.4xlarge
c4.8xlarge
p2.xlarge
p2.8xlarge
pZ.16xlarge
g2.2x/amge
g2.8xlarge
x1.16x/arge
x1.32x/arge
r3.large
r3.xlarge
r3.2xlarge
rge r3.4xlarge
r3.8xlarge
i2.xlarge
i2.2xlarge
12.4xlarge
i2.8xlerge
a2.xlarge
d2.2xlarge
d2.4xlarge
c2.8xlarge
hit.4xlarge
hs1.8xlarge
m3.medium
m3.large

m3.xdarge

M3 General Purpose Double Extra Large m3.2xlarge

Storage (GB):

Memory

60.5GB
225GB
a5GB
1.0GB
20GB
40G8
8.0GB
8.0GB
16.0GB
320GB
64.0GB
160.0 GB
256.0GB
3.75GB
75GB
15.0G8
300GB
60.0GB
61.0GB
488.0 GB
7320GB
15.0GB
60.0GB
976.0GB

1852.0GB

1525G8
305GB
61.0GB
1220G8
2440GB
30568
61.0GB
1220GB
2440GB
305GB
61.0GB
1220G8
244.0 GB
60.5GB
1170GB
3.75GB

75G8
150GB
300GB

Compute Units (ECL) vCPUS

88 units
33.5 units
Bursmable
Burstable
Bursiable
Burstatble
Burstable
6.5 units
13 units
26 units
53.5 units
124.5 units
188 units
8 units
16 units
31 units
62 units
132 units
12 units
94 units
188 units
26 units
104 units
174.5 units
349 units
6.5 units
13 units
26 units
52 units
104 units
14 units
27 units
53 units
104 units
14 units
28 units
56 units
118 unis
35 units
35 units
3 units
6.5 units
13 units

26 units

32 vCPUs
16 vCPUs
1 vCPUs
1vCPUs
1 vCPUs
2vCPUs
2 vCPUs
2vCPUs
4 vCPUs
8 vCPUs
16 vCPUs
40 vCPUs
64 vCPUs
2 vGPUs
4 vGPUs
8 vCPUs
16 vCPUs
38 vCPUs
4 vGCPUs
32 vCPUs
64 vCPUs
8 vCPUs
32 vCPUs
64 vCPUs

Storage

3360.0 GB (4 * 840.0 GB)
1680.0 GE (2 * B40.0 GB)
0 GB (EBS only)

0GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0GB (EBS only)

0 GB (EES only)

0 GB (EBS only)

0GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0GB (EBS only)

0 GB (EES only)

0 GB (EBS only)

0GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

0 GB (EBS only)

60.0 GB SSD

240.0 GB (2 * 120.0 GB SSD)
1920.0 GB SSD

128 vCPUs 3840.0 GB (2~ 1820.0 GB S5D)

2vCPUs
4 vCPUs
8 vCPUs
16 vCPUs
32 vCPUs
4 vCPUs
8 vCPUs
16 vCPUs
32 vCPUs
4 vCPUs
8VvCPUs
18 vCPUs
38 vCPUs
16 vCPUs
18 vCPUs
1 vCPUs
2 vCPUs
4 vCPUs
8 vCPUs

32,0 GB 5SD

80.0 GB SSD

160.0 GB SSD

320.0 GA SSD

640.0 GB (2 * 320.0 GB SSD)
800.0 GB S8D

1600.C GB {2 " 800.0 GB S5D)
3200.0 GB (¢ * 800.0 GB SSD)
6400.0 GB (8 * 800.0 GB SSD)
60C0.C GB (3 * 2000.0 GB)
12000.0 GB (6 * 2000.0 GB)
24000.0 GB (12 * 2000.0 GB)
4B000.0 GB (24 * 2000.0 GB)
2048.0 GB (2 * 1024.0 GB SSD)
48000.0 GB (24 * 2000.0 GB)
4,0 GB SSD

32.0GA 5SD

80.0 GB 2 * 40.0 GB SSD)
160.0 GB (2 * 80.0 GB SSD)

Arch
64-bit
64-bit
64-bit

32/64-bit

32/64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit
64-bit

64-bit

Network Perfarmance
10 Gigabit

10 Gigabit

Low

Low to Moderate
Low to Moderate
Low ta Moderate
Low to Moderate
Moderate

High

High

High

10 Gigabit

20 Gigahlt
Moderate

High

High

High

10 Gigabit

High

10 Gigabit

20 Gigabit

High

10 Gigabit

10 Gigabit

20 Gigabit

Moderate

it Moderate

High
High
10 Gigabit
Moderate
High
High
10 Gigabit
Mocerate
High
High
10 Gigabit
10 Gigabit
10 Gigabit

Mocerate

it Moderate

High

it High

EBS Optimized: Max Bandwidth VPC Only Linux On Demand cost Linux Reserved cost Windows On Demand cost Windows Reserved cost

N/A
N/A
N/A

N/A

N/A

N/A

450.0 Mbps
750.0 Mbps
1000.0 Mbps
2000.0 Mbps
4000.0 Mbps
10000.0 Mbps
500.0 Mbps
750.0 Mbps
1000.0 Mbps
2000.0 Mbps
4000.0 Mbps
750.0 Mbps
5000.0 Mbps
10000.0 Mbps
1000.0 Mbps
N/A

5000.0 Mtps
10000.0 Mbps
N/A

500.0 Mbps
1000.0 Mbps
2000.0 Mbps
N/A

500.0 Mbps
1000.0 Mbps
2000.0 Mbps
N/A

750.0 Mbps
1000.0 Mbps
2000.0 Mbps
4000.0 Mbps
N/A

N/A

N/A

N/A

500.0 Mbps
1000.0 Mbps

No

No

VYas
Yes
Yes
Yas
Yes
Yes
Yas
Yes
Yes
Yas
Yes
Yes
Yes
ACH)
Yes

Yes

No
No

No
No

No
No
No
No
No
No

No
No

No
No

No
No
No
No
No
No

$2.000 hourly
$2.100 hourly
$0.008 hourly
$0.013 hourly
$0.026 hourly
$0.052 hourly
$0.104 hourly
$0.120 hourly
$0.239 hourly
$0.479 hourly
$0.958 hourly
$2.394 hourly
£3.830 hourly
$0.106 hourly
$0.209 hourly
$0.419 hourly
$0.838 hourly
$1.675 hourly
$0.900 hourly
$7.200 hourly
$14.400 hourly
$0.650 hourly
$2.600 hourly
$6.669 hourly
$13.338 hourly
$0.166 hourly
$0.333 hourly
$0.685 hourly
$1.330 hourly
$2.660 hourly
$0.853 hourly
$1.705 hourly
$£3.410 hourly
$6.820 hourly
$0.690 hourly
$1.380 hourly
$2.760 hourly
$5.520 hourly
$3.100 hourly
$4.600 hourly
$0.087 hourly
$0.133 hourly
$0.266 hourly
$0.532 hourly

$1.090 hourly
unavailable
$0.005 hourly
$0.009 hourly
$0.018 hourly
$0.036 hourly
$0.072 hourly
$0.083 hourly
$0.164 hourly
$0.329 hourly
$0.658 hourly
$1.645 hourly
$2.632 hourly
$0.078 hourly
$0.155 hourly
$0.311 hourly
$0.621 hourly
$1.242 hourly
$0.684 hourly
$5.476 hourly
$10.951 hourly
$0.474 hourly
$1.896 hourly
$4.579 hourly
$9.158 hourly
$0.105 hourly
$0.209 hourty
$0.418 hourly
$0.836 hourly
$1.672 hourly
$0.424 hourly
$0.848 hourly
$1.696 hourly
$3.392 hourly
$0.402 hourty
$0.804 hourly
$1.608 hourly
$3.216 hourly
$1.698 hourly
$2.574 hourly
$0.048 hourly
$0.095 hourly
$0.190 hourly
$0.380 hourly

$2.570 hourly
$2.600 hourly
$0.009 hourly
$0.018 hourly
$0.036 hourly
$0.072 hourly
$0.134 hourly
$0.246 hourly
$0.491 hourly
$0.983 hourly
$1.966 hourly
$4.914 nourly
$7.862 hourly
$0.193 hourly
$0.386 hourly
$0.773 hourly
$1.546 hourly
$3.091 hourly
$1.084 hourly
$8.672 hourly
$17.344 hourly
$0.787 hourly
$2.878 hourly
$9.613 hourly
$19.226 hourly
$0.281 hourly
$0.583 hourly
$1.045 hourly
$1.944 hourly
$3.500 hourly
$0.973 hourly
$1.946 hourly
$3.891 hourly
$7.782 hourly
$0.821 hourly
$1.601 hourly
$3.062 hourly
$5.198 hourly
$3.580 hourly
$4.931 hourly
$0.130 hourly
$0.259 hourly
$0.518 hourly
$1.036 hourly

$1.336 hourly
unavailable
$0.007 hourly
$0.014 hourly
$0.032 hourly
$0.082 hourly
$0.106 hourly
$0.7184 hourly
$0.386 hourly
$0.735 hourly
$1.459 hourly
$3.672 hourly
$5.875 hourly
$0.170 hourly
$0.3329 hourly
$0.679 hourly
$1.357 hourly
$2.769 hourly
$0.888 hourly
$6.948 hourly
$13.895 heurly
$0.611 hourly
$1.979 hourly
$7.523 hourly
$15.046 hourly
$0.238 hourly
$0.428 hourly
$0.824 hourly
$1.480 hourly
$1.989 hourly
$0.585 hourly
$1.131 hourly
$2.260 hourly
$4.521 hourly
$0.472 hourly
$0.885 hourly
$1.690 hourly
$3.300 hourly
$2.260 hourly
$2.951 hourly
$0.100 hourly
$0.199 hourly
$0.397 hourly
$0.793 hourly



WHAIT DO WE WAN T/

1. Very little overhead for setup
once someone has an AWS account. In particular,
NO persistent overnead -- you don't have to keep
a large (expensive) cluster up and you don't have
to wait 10+ min for a cluster to come up



WHAIT DO WE WAN T/

2. As close to zero overhead for users as possible

In particular;, anyone who can write python
should be able to invoke It through a reasonable
interface. It should support all legacy code



WHAIT DO WE WAN T/

3. larget jobs that run in the
minutes-or-more regime.



WHAIT DO WE WAN T/

4. | don't want to run a service
That s, | personally don't want to offer the

front-end for other people to use, rather; |
want to directly pay AWS.,



WHAIT DO WE WAN T/

D. It has to be from a cloud player that's

likely to give out an academic grant
- AWS, Google, MS Azure.

There are startups Iin this space that might build cool technology, but often

don't want to be paid In AWS research credits.
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grant -- AWS, Google, Azure.
technology, but often don't want to be paid in AWS research credits.

here are startups in this space that might build cool




—Eric Jonas, 2017/



(condor) -~

"Most wrens are small and rather inconspicuous, except
for their loud and often complex songs.”




Ty AL

—xploiting real-time Building a “cloud button’
elastic execution

—low do systems change
when you have real-time
access to 10,000 stateless
cores In <| sec!

How can we bring the
benefits of elastic compute
to underserved audiences!?




I HE AP

The most important primitive:

map (function, data) and...th import pywren

import numpy as np

def addone(x):
return x + 1

def myfunc(x):
g e t U F'N X + 1 ‘)’(V]r._le.gixicn;.gi’\;lgzgiig;:ault_executor()

futures = wrenexec.map(addone, xlist)

futu rFres = pwex : map (myfunc , print [f.result() for f in futures]

pl"'i nt pywren. ge t_al 1_I"€SU1 The output is as expected:

[23 39 4] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



IHE AP

[he most important primrtive: import pywren

import numpy as np

map (function, data)

and... that's mostly 1t

def addone(x):
return x + 1

wrenexec = pywren.default_executor ()
xlist = np.arange(10)

futures = wrenexec.map(addone, xlist)

print [f.result() for f in futures]

The output is as expected:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



®
AWS Lambda Amazon S3

Run code without thinking about servers. Object storage built to store and retrieve any

Pay for only the compute time you consume. AEELNLoTALa fronkanywhnere

ANACONDA



AWS LAMBDA

« 300 seconds
single-core (AVX2)

* 512 MBin /tmp

» |.5GB RAM

* Python, Java, Node

Y Google Cloud Platform

CLOUD FUNCTIONS " Azure Functions

A serverless platform for building event-based microservices

Process events/with'a serverless code architecture



AMAZON 53

Simple Storage Service
* What is an object store?

* A place to put binary data

» ook data up by a path

» [ hat's basically it

Unlike a regular filesystem there 1s no

support for multiple read/write to a
file, or writing parts of a file, or...
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YOU CAN DO A LOT OF
WORKWITH MAP!
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Preprocess |.4M images from

IMAGENET

Compute GIST

image descriptor
(some random
python code off
ne Internet)
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job

3000

600
500
400
300
200
100

Results
returned

Setup done, I8 . WM host submit
B job start
JOb S_tal’“t B setup done
B job done
- results returned

50 100 150 200 250
wallclock time (sec)



start latency
setup time
compute
result fetch

80
seconds




Michael H. Oshita @ijin - Apr 28
PyWren - lambda map/reduce framework. 25TFLOPS!

““““““

[)a|_a anal.

« 95 TFLOPS performance
at masA)i....

P s | £n
+ 60GB/sec reac and U
N ~ NN ] -

GE/sec wnte 10 S3

wo

THENEWSTACK

WlthPyWren, AWS Lambda Finds an
Unexpected Market in Scientific Computing

16 Feb 2017 10:26am, by Joab Jackson

3

Wow, impressive scalability with

AWS Dev Day

MmO v &

Dave Smith

@ DruidSmith

@ ABOUT PROJECTS BLOG

2305 Million Solutions to The
Black-Scholes Equation in 16
Minutes with AWS Lambda

Cricnnally Bostent May =8, =i/

The reseasch Fn werking on irvolves estimating 2 firm's probability of default aver a variety of time
Rorizans using tha Mertan Distance to Default model. The dataset cantaing daily finandial information
far mare than 24,000 firms over the past 30 years. Given that | am calculating the proaabilicy of defaul:
over five time horizons, applying the Merton medel wi'l require sciving the Elack-5choles equaton
roughly 20z milion times. Luckily, the mocel is easily paralichzed because the enly cata needed for the
mocel, aside from the risk-free rate, is firm specific. Thie post snows how the Python library Fywren can
leverage AWS Lamtda to run hundrede of models in parallel achigving 3 220x speed-up over a quad-
cora i7-4770, wich minimal charges to the simulat on code. If you are interested in learning mare about

tha mozel, see my past abput imolemanting the model in Pythan.

ar scalabpility

Peter Scarth ¥4
€ @petescarth
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#Microservices and TerraFlops - Extracting
25 TFLOPS from #AWS #Lambda -
@stochastician on the origin of #pywren
ericjonas.com/pywren.html
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Occupy the Cloud: Distributed Computing for the 99% [VISION]
Eric Jonas, Qifan Pu, Shivaram Venkataraman, lon Stoica, Benjamin Recht (UC Berkeley)

ACM Symposium
on Cloud Computing




HOW [T WORKS

futures = runner.map(fn, data) :

Serialize func M \
Put on S3 i

Invoke Lambda N

futures[0] .result ()
poll S3

deserlalize and retum“ 5
the cloud

your laptop

pUl
downloac

python to run coc

Sl

/

job from s3

anaconda runtime

alize result

tick In S3

c




Start EPAOSIMIE

conda clean

277 MB

eliminate pkg

(Leptotyphlops carlae) 946 MB

VWant our runtime to include Delete non-AVX?2 MK|

6/0 MB

strip shared libs

510MB

delete pyc

nillow

— —

441 MB
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MAP IS NOT ENOUGH!

A lot of data analytics looks like:

=
pDreprocessing

featurization machine learning

\ / Distributed!
Scale! Tensorflow

Great PyWren kit Deep MLBase




"YOu can have a second computer when you ve
shown you know how to use the first one.”

—Paul Barnum, quoted in McSherry, 2015



scalable system cores | twitter | uk-2007-05 scalable system cores | twitter | uk-2007-05
Stratosphere [8] 16 950s - GraphLab 128 249s 833s
X-Stream [21] 16 1159s - GraphX 128 419s 462s
Spark [10] 128 1784s > 8000s Vertex order (SSD) 1 300s 651s
Giraph [10] 128 200s > 8000s Vertex order (RAM) 1 275s -
GraphLab [10] 128 242s 714s Hilbert order (SSD) 1 242s 2565
GraphX [10] 128 251s 800s Hilbert order (RAM) 1 110s -
Single thread (SSD) 1 153s 417s

Table 4: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
The single-threaded times use identical algorithmes,
but with different edge orders.

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-

threaded label propagation from SSD.

Scalability! But at what COST? Frank McSherry, Michael Isard, Derek G. Murray.
USENIX Hot Topics In Operating Systems, 2015




SINGLE-MACHINE REDUCE
T

x|.32xlarge 64 e $14/hr

x|l 6xlarge 32 | TB $//hr
32 +

D2. | bxlarge 6 CPL /50 GB $14/hr

r4. | 6xlarge 32 500 GB $4/nr

futures = exec.map(function, data)

answer = exec.reduce(reduce func, futures)
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COMPUTATIONAL IMAGING

Hardware design Take Image Processing SUCCESS
Complex
Nick Antipa, Sylvia Necula, Ren Ng, Laura Waller forward models
'Single-shot diffuser-encoded light field
imaging." Computational Photography (ICCP), 2016 IEEE Large-scale

International Conference on. IEEE, 201 6.

solvers



Jonas, Shankar, Bobra, Recht. Solar Flare
Prediction via AIA and HMI Image

data. American Geophysical Union Annual
Meeting, 2016




NEUROSCIENCE

Cell soma position in plane
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Eric Jonas and Konrad Kording.
Automatic discovery of cell types

|
000000008 CTOOTOD
\

\
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:

icrocircuitry from neural
connectomics elife, April 30 2015

and m
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Could a Neuroscientist understand a microprocessor?

Jonas, Kording. PLOS Computational Biology, 2017
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" CURRENT
RESEARCH
DIRECTIONS




CURRENT
PYVVREN
RESEARCH

* Beyond

*+ APACK

PSPAC

« Jowards Shuffle

» Compa
Provide

rison of Cloud

05

Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads

Sadjad Fouladi %, Riad S. Wahby %, Brennan Shacklett %,
Karthikeyan Vasuki Balasubramaniam ¥, William Zeng %, Rahul Bhalerao ¥,
Anirudh Sivaraman I'ir, George Porter ¥, Keith Winstein %

Stanford University B, University of California San Diego Y, Massachusetts Institute of Technology PET

NSDI |

Wise Technology

Serverless Distributed Decision Forests with
AWS Lambda

Posted by Joshua Bloom ® June 26, 2017

+ -“~rvy 11y Nierid = \ ~ s rvasesrmEl vy T s = ~lsrd = ey ~sre e st irs
o0 team In GE Digital, we have monthly "eau-hackaays" wnhere the entire
tech team spends the entire 2arn and implement new pror

Server\essbatabases
l r i S e Johann Schleier-Smith

U Beeley & JOE Hellerstein




HOW EXPENSIVE IS $3/

(Taking dimensionality analysis seriously, or “beyond PSPAC

Storage Pricing (varies by region)

Region: [ US West (Oregon) 8 ]

Standard Storage
First 50 TB / month $0.023 per GB
Next 450 TB / month $0.022 per GB

Over 500 TB / month $0.021 per GB




How much storage can you get for a dollar?

1.9PB * How do algorithms change

. when you have infinite
memory (through a straw)

* Never discard intermediate
information

— storage
- read
———  \Write

m 10m 1h 1 day 1 month
data lifetime

- = 1 YIp»




NumPyVVren

Vaishaal Shankar



NumPyVVren

* [hat's a lot of SIMD cores!

» Parallel matrix multiplication I1s easy when output matrix is
small

:
N x D

* Frts cleanly into map-reduce framework

..+...+..:




NumPyVWVren

+ However when output matrix is very large it becomes very difficult
or expensive to store iIn memory

:
N x D N x N

» For example for N = le6 and D=1le4

. D x D matrix of doubles is 800 Mb Keeping the
kernel
- N x N matrix of doubles is 8 TB dream alivel

""""

» Storing 8 TB In memory traditional cluster is expensivel




NumPyVVren

.ﬂ

ol0000) /G4 | 925 20 GB

50000 HESESYARNNIYL 2/ 1s 20 GB

* Solution:; Use S3 to store matrices,
stream b‘OC‘(S TO Lambdas 1O |\/||'|l|2 4096 3000 13205 | TR
compute output matrix in parallel Hor

.2

- 18432 3000 2520s |l
Million




teration Interface



[ TERATION INTERFACE

def myfunc(iter pos, last state, arg):
1f 1ter pos == 0:
return create init state(arg)
else:
return next state(last state, arg)

def grad step(k, x k, alpha):
1f k == 0:
return np.zeros(N)
else:
return x k + alpha * grad(x k)



RUNNING HE EXECUTOR

wrenexec = pywren.default executor ()
with IterExec(wrenexec) as IE:
ITER NUMBER =
ALPHAS = [ , , ]
iter futures = IE.map(grad step, ITER NUMBER,ALPHAS)

IE.wait till done(iter futures)



SIMPLE EXAMPLE

def offset counter(k, x k, offset):
time.sleep(60)
1f k == 0:
return offset
else:
return x k + 1

Actual work

L aptop teration | Laptop teration 2
Submit Recelves

dNSWeEr



iteration worker

1{010)' g e e
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total wallclock time

N setup
) ()

Start ! lambda run compute :
. Time Time Result
time return
60
800
50 | |
~or a |Job with .
40 60s 1terations
30 400
20
200
10
o L L TRR I X 5
0.76 0.78 0.80 0.82 0.84 0.80 0.85 0.90 0.95 1.00

time (wallclock) efficiency cost efficiency




TUTORIAL EXERCISES

-n [5):

PyWren RISECamp, 2017

\Velcome to the hande-on tutorial tor PyWvren.
This tutarizal consists of a sat of exercises that will hava you wark ng d ractly with PyWren:

= DasIC exercises that introduce you to PyWren A=Is (covered n this notedook)
- data analysis on a wikipedia dataset (see ena'yze-wikipedia.ipynb)

= matrix multiplication with Py'Wren (see matrix-comoutations-advanced.ioynb)
e hyperparamete- optimizatiar (sea hyperparamate~optimization.ipyrb!

A cougia of notes before you dive Into the actual tutonals:

To run a code cel': seect the cell, click Cell - Run Cells or use Ctrl + Cnter.

o Execute indicates that the following code cell just warks as given. Make sure to run them.
o Exercise indicztes ar incomplete/oroken code cell. Modify the code to make them work
YOou can find soluticns fcr the exercises here

Introduction to PyWren |

For this tutorial, we have a ready instaled PyWran in the docker contziner where this jLpyter rotebaok is running. PyWren nrovide:
command lne 1ool that provides basic functionalities for creating AWS |IAM  roles, configuricg PyWren  envircnme
deploying/updating Lambda functions, et1c. V/e have also dene that “or you.

Bafore we go into the exercses, et's use tha command Iine tool to test if PyWren worke properiy.

Execute the cell beow ).
If Pv\Wren is correctly installed, vou should see furnetion returned: Hello world zfter = few seconds.

pywren-intro.1ipynb

Hyperparameter optimization for machine learning

Many mzchine learming models have hyperparamters -- parameters that control some aspect of the model. The exact settng of
these hyparparameaters can dramaricaly impact the performance of your underlyi~g mace . Fortunately, most hyperpa-ameters can
be tried n parallel, makng the task of nyperpsremtzr optimization a grzat fit for PyWren.

Here we use & s mple datasel inc uced in scicit-leam to show how to do hyperparareter cptimizat or across a number of d fferent
datasets, and z number o d fferent cross-val dations

$pylab nline

import pywren

import sklearn

import scaborn as sns

import itertools

import pandas as pd

from sklearn.model seloction import train test split
import sklcarn.svm

from sklearn.preprocessing import StardardScaler
irom sklearn.pipeline import maka pipsline, Pipeline

Populating the interaclive navespace from numpy and watplo.ib

get the data

First we 12ac in the data from €cikit Iearn anC examing it. Here we will be using an existing dataze: of breast cancer tumor Jrozerties
trat's shipped with scikit-dearn, This is a small binary classificat on probem, and the "wperparaneter oplimizatior we are doirg here

hyperparameter—optimization.1pynb

In [ ):

In [ 1!

in [ )¢

ma

PyWren RISECamp, 2017

Data Analytics with PyWren

In this section, we v/ill use PyWren exolore a dataset o Wikipedia records.

0. The Data

We've drepared an S3 buc<at witr 20GE ct Wikipa2dia traflic statistics data obtained from hitol/aws.amazon.com/datassts/£182. |
make tre &nalyeis more f2asible tor tre short tima you're here, we've chortened the dataset to three days wortnh of data (May b I
May 7, 2008; rcughly 20G and 324 million encries).

Le's take a look irtc the bucket with our dataset. We'l print a few files from a few files from our bucket.

Execute the ccde below tc ornt out the rames of the first 20 files.

¥ These lines arc only neceded for the colutions.

import sys
sys.path.append("..")

# some libraries that are useful for this tutorial
from training import wikipedia bucket, 1ist _kecys with prefix, rcad from s3

filenames = list keys with prefix(wikipedie bucket, "wikistats 20090505 restricted-01/")
for filename in filosnames|:20):
print(filename )

analyze-wikipedia.ipynb

Large Scale Matrix Computations

In this notaboolkwe w i walk through some of the more edvanced th ngs ycu can achieve with PyWran. Namely using S2 as e tac<ing
store we will implement a nazrest neighhor classifisr algorithm.

tpvylab inlinc

import beotod

import cloudpickle

import itertools

import concurxent.fulures as s
impert ic

inport numpy as np
impert time

from impertlib import reload
from sklearn import metrics

import pywren

inport pywren.wrenconfig as we
import itertools

trom operator import itemgetter
import matrix

JEFAULT EUCKEL = wc.default{)|'s3" [ 'bucket’)

1. Matrix Multiplication

Cne nce thing about PyWren is it allows users ‘o inteagra-e existinn pyvthon libraries easily. mor the following sxercise, we ae qaino to

trix-computations-advanced. ipynb
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{ANK YOU!

YyWren.io

~ Shivaram
Venkataraman




