
16:9 TEST SLIDE

64 pt Gil Sans
84 pt Gil Sans
48 pt Gil Sans

20 pt Gil Sans

32 pt Gil Sans

OCCUPY
THE CLOUD

Shivaram
Venkataraman

Ben
Recht

Ion
Stoica

Qifan
Pu

Allan
Peng

Vaishaal
Shankar

Distributed computing for the 99%

Eric Jonas
Postdoctoral Researcher
jonas@eecs.berkeley.edu 
@stochastician

Berkeley Center for  
Computational Imaging

ONCE UPON A TIME…
(my Markovian life decisions)

Grad school was embarrassing(-ly parallel)

–Eric Jonas, 2017
“I hate computers”

I’m interested in how computer science and
machine learning can improve

instrumentation and measurement

Inverse
Problems

Computational
Imaging

Signal  
processing

Compressed
Sensing

Superresolution

Phase contrastTomography

Adaptive Optics

Why is there no
“cloud button”?

PREVIOUSLY, AT
COMP IMAGING

LUNCH

The cloud is too
damn hard!

Jimmy McMillan
Founder and Chairman
The Rent is Too Damn High Party

Less than half of the graduate
students in our group have

ever written a  
Spark or Hadoop job

#THECLOUDISTOODAMNHARD

• What type? what
instance? What base
image?

• How many to spin up?
What price? spot?

• wait, Wait, WAIT oh god

• now what? DEVOPS

WHAT DO WE WANT?

1. Very little overhead for setup  
once someone has an AWS account. In particular,
no persistent overhead -- you don't have to keep
a large (expensive) cluster up and you don't have
to wait 10+ min for a cluster to come up

WHAT DO WE WANT?

2. As close to zero overhead for users as possible  
In particular, anyone who can write python
should be able to invoke it through a reasonable
interface. It should support all legacy code

WHAT DO WE WANT?

3. Target jobs that run in the
minutes-or-more regime.

WHAT DO WE WANT?

4. I don't want to run a service.  
That is, I personally don't want to offer the
front-end for other people to use, rather, I
want to directly pay AWS.

WHAT DO WE WANT?

5. It has to be from a cloud player that's
likely to give out an academic grant
-- AWS, Google, MS Azure.  
 
There are startups in this space that might build cool technology, but often
don't want to be paid in AWS research credits.

ORIGINAL DESIGN GOALS
1.Very little overhead for setup once someone has an AWS account. In
particular, no persistent overhead -- you don't have to keep a large (expensive) cluster
up and you don't have to wait 10+ min for a cluster to come up

2.As close to zero overhead for users as possible -- in particular, anyone who can
write python should be able to invoke it through a reasonable interface.

3.Target jobs that run in the minutes-or-more regime.

4.I don't want to run a service. That is, I personally don't want to offer the
front-end for other people to use, rather, I want to directly pay AWS.

5.It has to be from a cloud player that's likely to give out an academic
grant -- AWS, Google, Azure. There are startups in this space that might build cool
technology, but often don't want to be paid in AWS research credits.

–Eric Jonas, 2017
“I hate computers”

servers

“Most wrens are small and rather inconspicuous, except
for their loud and often complex songs.”

(condor)

WHAT IS PYWREN
Research Tool

How do systems change
when you have real-time
access to 10,000 stateless

cores in <1 sec?

Exploiting real-time
elastic execution

How can we bring the
benefits of elastic compute
to underserved audiences?

Building a “cloud button”

THE API
The most important primitive:

map(function, data) and… that’s mostly it

def myfunc(x):
 return x + 1

futures = pwex.map(myfunc, [1, 2, 3])

print pywren.get_all_results(futures)

[2, 3, 4]

THE API

The most important primitive:

map(function, data)
and… that’s mostly it

+

• 300 seconds  
single-core (AVX2)

• 512 MB in /tmp

• 1.5GB RAM

• Python, Java, Node

AWS LAMBDA

AMAZON S3
• What is an object store?

• A place to put binary data

• Look data up by a path

• That’s basically it

Simple Storage Service

Unlike a regular filesystem there is no
support for multiple read/write to a
file, or writing parts of a file, or…

PYWREN SCALABILITY
Compute Data

YOU CAN DO A LOT OF
WORK WITH MAP!

Extract
Transform 
Load

(hyper)
parameter

tuning

Scalable Simulation

IMAGENET EXAMPLE
Preprocess 1.4M images from

IMAGENET
Compute GIST
image descriptor
(some random
python code off

the internet)

Host
submit

Lambda
Start

Setup done,
Job start

Results
returned

Job
Done

Stragglers

INTEREST!

AWS Dev Day

HOW IT WORKS

pull job from s3
download anaconda runtime

python to run code
serialize result

stick in S3

your laptop the cloud

futures = runner.map(fn, data)

Serialize func and data
Put on S3
Invoke Lambda

func datadatadata

futures[0].result()
poll S3

deserialize and return
result

(Leptotyphlops carlae)

Start

Delete non-AVX2 MKL

strip shared libs

conda clean

eliminate pkg

delete pyc

977 MB

1205MB

441MB

946 MB

670 MB

510MB

Want our runtime to include

BEHIND THE
HOOD

MAP IS NOT ENOUGH?
A lot of data analytics looks like:

ETL /
preprocessing featurizationData machine learning

Distributed!
Scale! TensorFlow

Deep MLBaseGreat PyWren Fit

–Paul Barnum, quoted in McSherry, 2015

“You can have a second computer when you’ve
shown you know how to use the first one.”

Scalability! But at what COST? Frank McSherry, Michael Isard, Derek G. Murray.
USENIX Hot Topics In Operating Systems, 2015

SINGLE-MACHINE REDUCE

But I don’t have a big
server!

futures = exec.map(function, data)  
 
answer = exec.reduce(reduce_func, futures)

cores RAM COST

x1.32xlarge 64 2 TB $14/hr

x1.16xlarge 32 1TB $7/hr

p2.16xlarge 32 +  
16 GPUs 750 GB $14/hr

r4.16xlarge 32 500 GB $4/hr

USING PYWREN
(my day job)

COMPUTATIONAL IMAGING

Hardware design Take Image Processing Success

Complex
forward models

Large-scale
solvers

Nick Antipa, Sylvia Necula, Ren Ng, Laura Waller
"Single-shot diffuser-encoded light field
imaging." Computational Photography (ICCP), 2016 IEEE
International Conference on. IEEE, 2016.

1.5 TB/day
Jonas, Shankar, Bobra, Recht. Solar Flare
Prediction via AIA and HMI Image
data. American Geophysical Union Annual
Meeting, 2016

NEUROSCIENCE

Eric Jonas and Konrad Kording.
Automatic discovery of cell types
and microcircuitry from neural
connectomics eLife, April 30 2015

Could a Neuroscientist understand a microprocessor?
Jonas, Kording. PLOS Computational Biology, 2017

CURRENT
RESEARCH

DIRECTIONS

CURRENT
PYWREN
RESEARCH

• Beyond PSPACE

• λPACK

• Towards Shuffle

• Comparison of Cloud
Providers

NSDI ‘17

Johann Schleier-Smith  
& Joe Hellerstein

Serverless Databases

HOW EXPENSIVE IS S3?
(Taking dimensionality analysis seriously, or “beyond PSPACE”)

• How do algorithms change
when you have infinite
memory (through a straw)

• Never discard intermediate
information

Vaishaal Shankar

NumPyWren

• That’s a lot of SIMD cores!

D x N = D x D

N x D

+ … + = D x D

• Parallel matrix multiplication is easy when output matrix is
small

• Fits cleanly into map-reduce framework

NumPyWren

• However when output matrix is very large it becomes very difficult
or expensive to store in memory

• For example for N = 1e6 and D=1e4

• D x D matrix of doubles is 800 Mb

• N x N matrix of doubles is 8 TB

• Storing 8 TB in memory traditional cluster is expensive!

N x D

D x N =
N x N

Keeping the
kernel

dream alive! Ben Recht

NumPyWren

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

� � � �

�

�

�

���

� � �

���

N D Lambdas Runtime Output Size

50000 784 225 192s 20 GB

50000 18432 225 271s 20 GB

1.2
Millon 4096 3000 1320s 11 TB

1.2
Million 18432 3000 2520s 11 TB

NumPyWren

Iteration Interface

ITERATION INTERFACE
def myfunc(iter_pos, last_state, arg):
 if iter_pos == 0:
 return create_init_state(arg)
 else:
 return next_state(last_state, arg)

def grad_step(k, x_k, alpha):
 if k == 0:
 return np.zeros(N)
 else:
 return x_k + alpha * grad(x_k)

RUNNING THE EXECUTOR

wrenexec = pywren.default_executor()

with IterExec(wrenexec) as IE:
 ITER_NUMBER = 100
 ALPHAS = [0.001, 0.01, 0.1]

 iter_futures = IE.map(grad_step, ITER_NUMBER,ALPHAS)

 IE.wait_till_done(iter_futures)

SIMPLE EXAMPLE

Laptop
Submit

Laptop
Receives
answer

Actual work

Iteration 1 Iteration 2

def offset_counter(k, x_k, offset):
 time.sleep(60)
 if k == 0:
 return offset
 else:
 return x_k + 1

…

Total:
97.5%

Start
time

Result
return

total wallclock time

compute
time

lambda run
time

setup

For a job with
60s iterations

TU
TO

RI
AL

 E
X

ER
CI

SE
S

pywren-intro.ipynb analyze-wikipedia.ipynb

matrix-computations-advanced.ipynbhyperparameter-optimization.ipynb

OUR VISION
• Map for everyone

• Transparent language support

• Transparent elasticity

• Unlimited fast storage

pywren.io
THANK YOU!

Shivaram
Venkataraman

Qifan
Pu

Allan
Peng

Vaishaal
Shankar

Ben
Recht

Ion
Stoica

