Big Data, Spark, & Databricks

Andy Konwinski

Nov 14,2017, CS285 Guest Lecture, Stanford

Many slides re-used from:
Burak Yuvaz, Databricks. Berkeley CS186 Spring 2017
Reynold Xin, Databricks. Berkeley CS186 2016

Matei Zaharia, Databricks. Processing Big Data with Small Programs databriCkS

Michael Franklin, SQL, NoSQL, NewSQL?. Berkeley C5186 2013

Who Am I

Technical Cofounder at Databricks
Co-creator of Apache Mesos

Apache Spark Committer

PhD CS, UC Berkeley; BS CS, U of Wisconsin

€databricks

Agenda

« Whatis Big Data? What s it used for?
 Brief history of Big Data analytics

« Apache Spark & Databricks

« Demo & discussion

€databricks

What is Big Data?

big data

Search term

+Add term

Interest over time - v/ News headlines Forecast 7

G
A
Mw—‘ T —— -
2005 2007 2009 2011 2013 2015
<H

€databricks

Gartner's Definition

.
_/
- - Vala'a aV¥ea a) a a a alaVWa a a) a'a) alwea a'a --
Ci U Ci U _ - \/ 5 <V C \/ _ _/ _ C _
- - a) ava - alala - aVea - ada aVve Ve Va 1 alallla'a ava
VALY, ¢~ _/ Ci U ~ Ci A U _ &N ¢ ™~ .
O o O

€databricks

3+1 Vs of Big Data

Volume: data size
Velocity: rate of data comingin

Variety (most important V): data sources, formats, workloads

Veracity: data cleanliness, completeness, accuracy

€databricks

3+1+N V] nf Ricr DNata

Volume

1 The 7 V's of Big Data | Impact X Andy
C' ® https://www.impactradius.com/blog/7-vs-big-data/ a vw B = :
i:* Apps [chewey oatmeal raisir [] Bookcision [1 Read Later EJ Instapaper & Google Apps Admin [] Sub in Goog Reader & Next » {I Preview post » [=] Other Bookmarks

l_'1'| Impact Radius Solutions v BuiltFor v Resources Blog AboutUs ~ We're Hiring O\ m

Announcements Insight Products All Posts

Velocit

Variety

Veracity

€databricks

The 7 V's of Big Data

By Ashley DeVan on April 7, 2016

Value.

The 7V's
of Big Data Volume

Volume is how much data we have - what used to be measured in
’ Gigabytes is now measured in Zettabytes (ZB) or even Yottabytes
~ (YB). The loT (Internet of Things) is creating exponential growth in
data. This infographic from CSC does a great job showing how much the volume of data is
projected to change in the coming years.

Volume, Velocity, Variety, Variability, Veracity, Visualization, and

o

What is it used for?
Why is it valuable?

Motivation: .

Security
* Fraud detection
« Anomaly detect

Examples:

« ~S16B/yrlost to
« ~15M victims/yr

- CapitalOne detects fraud in

real-time

€databricks

Business Use Cases

. Total One Year Fraud Amount (Billions)
ion for breaches 530
$26 <I\Z
$21 Spark
$13
$9
$4
$0
2010 20M 2012 2013 2014
CC fraud - e

>) 0:32/78:59 - @ % Youlube ir

Motivation: Business Use Cases

Machine Learning: Recommendation Systems
« Recommend products/social connections/features

Examples:
* Riot Games - League of Legends

- In-store purchase of outfits/cosmetics for characters. A main profit driver
- ldentifying unsportsperson like conduct in chat rooms & warning or banning

« Hotels.com - recommend hotels/car rentals

€databricks

Agenda

Whatis Big Data? What s it used for?

» Brief history of Big Data analytics

Apache Spark & Databricks
Demo & discussion

€databricks

History & Roots

2003 - Google published GFS

2004 - Google published MapReduce

2006 - Hadoop created

2009 - Spark created (as part of Mesos project)
2013 - Databricks created

€databricks

Challenges Google faced

Obama the varror
The | Wagoverning Argestin
ECONOMIiSt || ok shintionmestiots
Geneticaly modified crops blossom

Emsnimeknad || Geeaie | Therightlo catcats anddogs
AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

Data size growing (volume & velocity)

Complexity of analysis increasing (variety)
- Massive ETL (web crawling), Machine learning

MACHINE LEARNING

€databricks

Why didn't Google just use an
existing database?

Why didn't Google just use databases”

No databases at the time worked at that SCale

't COST less to build than buy (vendors charge by TB or machine)
Alotof UNStructured data: web pages, images, videos
SQL not right programming model for their tasks

€databricks

The Big Data solution
Single machine can’t process or store all the data

Only solution is to distribute general storage & processing over
clusters.

€databricks

Data-Parallel Models

Restrict the programming interface so that the system can do more
automatically

“Here’s an operation, run it on all of the data”
- I don’t care where it runs (you schedule that)
- In fact, feel free to run it twice on different nodes
- Similar to “declarative programming” in databases

€databricks

2003

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT

We have designed and im ed the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. [t provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points.

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.

In this paper, we present file system interface extensions
designed to support distributed applications, discuss many
aspects of our design, and report measurements from both
micro-benchmarks and real world use.

€databricks

1. INTRODUCTION

We have designed and impl ed the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs, operating system bugs, human errors, and the failures
of disks, memory, connectors, networking, and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recovery must be integral to the
system.

Second, files are huge by traditional standards. Multi-GB

2004

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-

Pair and share: what is MapReduce”

€databricks

Problems with MapReduce that led to Spark

1. Programming model
2. Performance

€databricks

Agenda

Whatis Big Data? What s it used for?
Brief history of Big Data analytics

« Apache Spark & Databricks

Demo & discussion

€databricks

MapReduce Challenge #1: Programming model

Most real applications require multiple MR steps le prs ds exegution
» Google indexing pipeline: 21 steps primitives compiled by
nigher layer

* Analytics queries (e.g. groupby + count): 2-5 steps .
abstractions...

YAHOO! |

« |terative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code

« 21 MR steps -> 21 mapper and reducer classes
« Lots of boilerplate code per step

In reality, 90+% of MR jobs

are generated by Hive SQL

€databricks

Programming model
Spark WordCount:

Full Google WordCount:

#include "mapreduce/mapreduce.h"

// User’s map function
class sSplitwords: public Mapper {
public:
virtual void Map(const MapInput&
input)
{
const string& text =
input.value(Q);
const int n = text.size();
for (int i =0; i <n;) {
// Skip past leading whitespace
while (i < n &&
isspace(text[i]))
T+
// Find word end
int start = 1i;
while (i < n &&
lisspace(text[i]))
T+
if (start < 1)
Emit(text.substr(
start,i-start),"1");
3
}
1

REGISTER_MAPPER(Sp1itwords);

€databricks

// User’s reduce functi

class sum: public Reduc val file =
pubTic:
virtual void Reduce(r(VAL counts
input)
{

// Iterate over all
the

// same key and add

int64 value = 0;
while (!input->done
value += StringTo
input-;
input->Nextvalue (5

spark.textFile(“hdfs://...”)
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.save(“out.txt”)

3
// Emit sum for input->key()
Emit(IntToString(value));
3
1

REGISTER_REDUCER (Sum) ;

int main(int argc, char** argv) {
ParseCommandLineFlags(argc, argv);

UuT STCTTTICoasScT(/7 YrS7 ceSCc/TrTrey Jy

out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("sum");

// Do partial sums within map
out->set_combiner_class("sum");

// Tuning parameters
spec.set_machines(2000);
spec.set_map_megabytes (100);
spec.set_reduce_megabytes(100);

// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result))

abort();

}

return O;

file.flatMap(line => line.split(* 7))

MapReduce Challenge #2: Performance

Fach MR job writes all output to disk
Lack of more primitives such as data broadcast

Spark provides data caching and broadcast primitives

Many many other performance optimizations
e.g. in-memory columnar storage
1.6+ has relational optimizer

€databricks

Performance

v, [155 | e i
: W Spark

0 30 60 90 120 150 180

- . 11
Logistic Regression 0

0.96

0 25 50 75 100 125

Time per Iteration (s)

€databricks

Spark history & overview

Started in Berkeley in 2010; donated to Apache Foundation in 2013

Programmability: Domain Specific Language in Scala / Java / Python /R

« Functional transformations on collections
e 5-10Xless code than MR
« Interactive use from Scala / Python REPL

Performance:
« General DAG of tasks (i.e. multi-stage MR)

« Richer primitives: in-memory cache, torrent broadcast, etc
« Canrun 10 - 100X faster than MR

€databricks

€databricks

Spark stack

DataFrames API

Spark Spark :

RDD API

Spark Core

/ / Data Sources\\

AEEEEE @ (ﬁ HEESE '!L @ {JSONMU-,(E(_ elasticsearch.

Top Applications

Business Intelligence 68%
Data Warehousing
Recommendation

Log Processing

User-Facing Services

Faud Detection / Security 29%

€databricks

Spark has 1000s of users

HE - v airbn
facebook mn Microsoft .)

NINp
‘S amazon pital Ol LI
¥ webservices s CapitalOre N

ING)

Goldman 7373/5771(” Liczq sie ludzie
achs UBER Taobao.com
salesforce
K
Tencent i BaichEE THoson

€databricks

Compare searchterms ~

Apache Hadoop Apache Spark
Search term Search term +Add term
Interest over time - v News headlines Forecast

Ny
o
w

Average 2005 2007 2008 2011 2013

<D

Note : not a scientific comparison.

€databricks

“Spark is the Taylor Switt
of big data software.”

- Derrick Harris, Fortune

When should I use Spark?

€databricks

When Should I Use Spark”

| want to know how much of my product was sold per country.

€databricks

When Should I Use Spark?

| want to know how much of my product was sold per country.

€databricks

When Should I Use Spark”

| want to serve the user preferences of a customer when they
click “Settings” on my website.

€databricks

When Should I Use Spark”

| want to serve the user preferences of a customer when they
click “Settings” on my website.

€databricks

When Should I Use Spark”

| want to extract features from thousands of newspaper
articles and classify whether an article belongs in the
“Economy” or “Politics” section.

€databricks

When Should I Use Spark”

| want to extract features from thousands of newspaper
articles and classify whether an article belongs in the
“Economy” or “Politics” section.

€databricks

When Should I Use Spark”

Given a map, | want to figure out the fastest way to get from
point A to point B.

€databricks

When Should I Use Spark”

Given a map, | want to figure out the fastest way to get from
point A to point B.

€databricks

When Should I Use Spark”

| want to centralize all the data my sensors are generating all
around the world. | would like to push my data somewhere
from these sensors.

€databricks

When Should I Use Spark”

| want to centralize all the data my sensors are generating all
around the world. | would like to push my data somewhere
from these sensors.

€databricks

When Should I Use Spark”

| have sensors generating data every 15 seconds. | want to
analyze the data but first enrich it with regional information
and aggregate per region in 15 minute windows.

€databricks

When Should I Use Spark”

| have sensors generating data every 15 seconds. | want to
analyze the data but first enrich it with regional information
and aggregate per region in 15 minute windows.

€databricks

Sparks life story

Original o Structured Streaming
research Spark 1.0 & libraries Code generation
paper (SQL, ML, GraphX) Vectorization
2010 2013 2015 2017
2012 2014 2016
o etartod Databricks v Deep Learning
Eta[; ska[€ started. DataFrames Integrations.
crReicy Spark donated Tungsten Support for
to Apache ML Pipelines Transactions
Dataset
R

€databricks

R

D

Ds and .

Datakrames

..and how to use them.

€databricks

Spark Core API Evolution

Early adopters

Users Data Scientists
> > Statisticians
Understand R users
PyData
MapReduce

& functional APIs

\]|

| |
Resilient Distributed Datasets (RDDs) DataFrames

€databricks

DataFrames in Spark

Distributed abstraction for tabular data in Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, R), thus easy to learn

> head(filter(df, df$waiting < 50)) # an example in R
eruptions waiting

H#1 1.750 47
Hit2 1.750 47
H#3 1.867 48

€databricks

RDD

pdata.map(lambda x: (x.dept, [x.age, 1]1)) \
.reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]1]) \
.map(lambda x: [x[0], x[1]1[@] / x[1]1[11]) \
.collect()

DataFrame

data.groupBy("dept").avg("age")

€databricks

Spark RDD Execution

opaque closures

Java/Scala , , Python
frontend (user-defined functions) froyntend
JVM Python
backend backend

€databricks

Spark DataFrame Execution

DataFrame
frontend

\ 4

Logical Plan Intermediate representation for computation

Catalyst
optimizer

\ 4

Physical
execution

€databricks

Spark DataFrame Execution

Py[t)hFon JavaéISEcala oL Simple wrappers to create logical plan

Logical Plan Intermediate representation for computation

Catalyst
optimizer

\ 4

Physical
execution

€databricks

DataFrames and Spark SOL

Efficient library for structured data (data with a known schema)
« Two interfaces: SQL for analysts + apps, DataFrames for programmers

Optimized computation and storage, similar to RDBMS

SIGMOD 2015

Spark SQL: Relational Data Processing in Spark

Michael Armbrustf, Reynold S. Xint, Cheng Liant, Yin Huait, Davies Liuf, Joseph K. Bradleyt,
Xiangrui Mengt, Tomer Kaftan:, Michael J. Franklint*, Ali Ghodsit, Matei Zaharia'*

tDatabricks Inc. *MIT CSAIL *AMPLab, UC Berkeley

o . ABSTRACT While the popularity of relational systems shows that users often
‘ databr]_CkS Spark SQL is a new module in Apache Spark that integrates rela- prefer writing declarative queries, the relational approach is insuffi-
cient for many big data applications. First, users want to perform

tional processing with Spark’s functional programming API. Built . . p
e e QLo Cearl @OV late Qoarl ETL to and from various data sources that might be semi- or un-

N YT

€databricks

|

Data
source <
AP

Execution Steps

e
~.

Plan J

Logicaﬂ Optimizer

>

~-

[Catalog]

Physicaﬂ Code {RDDS}
:

Plan J Generato

20N

elasticsearch.
PostgreSQL iVE .« . .

DatalFrame AP]

DataFrames hold rows with a known schema and offer relational
operations on them through Spark’s DataFrame relational AP

users = spark.sql(“select * from users”)
ca_users = users.where(users.state == “CA”)
ca_users.count()

ca_users.groupBy(“name”).avg(“age”)

€databricks

Why DataFrames”

Based on data frame concept in R and Python
 Spark is the first to make this a declarative API

Integrates with other data science libraries
« MLlib, GraphFrames, ...

2005 2007 2009 2011 2013 2015

€databricks Google trends for “data frame”

Other High-Level APIs

Machine Learning Pipelines : »—»ﬂ—»ﬂ—**

Modular APl based on scikit-learn DataFrame model

GraphFrames
Relational + graph operations

Structured Streaming
Declarative streaming APl in Spark 2.0

Many high-level data science

APIs can be declarative

€databricks

DEMO

€databricks

Thanks! Questions?

andy@databricks.com

Many slides re-used from:
Burak Yuvaz, Databricks. Berkeley CS186 Spring 2017
Reynold Xin, Databricks. Berkeley C5186 2016

Matei Zaharia, Databricks. Processing Big Data with Small Programs databr]_CkS

Michael Franklin, SQL, NoSQL, NewSQL?. Berkeley C5186 2013

What's really different?
SQL on Big Data (Hadoop/Spark) vs SQL in Databases?
Two perspectives:

1. Flexibility in data and compute model

2. Fault-tolerance

€databricks

Traditional Database Systerns (Monolithic)

Applications

SQL

Physical Execution Engine (Dataflow)

Storage Manager

One way (SQL) in/out and data must be structured

€databricks

Big Data Systems (Layered)

Applications

Data-Parallel Engine (Spark, MR)

General Storage (HDFS, S3, etc)

Decoupled storage, low vs high level compute
Structured, semi-structured, unstructured data
Schema on read, schema on write

€databricks

Evolution of Database Systems
Decouple Storage from Compute

Traditional 2014 -2016
Applications Applications
QL SQL
Physical Execution Engine (Dataflow) Physical Execution Engine (Dataflow)
Storage Manager General Storage (HDFS)
IBM Big Insight
Oracle

EMC Greenplum

€databricks support for nested data (e.g. JSON)

Perspective 2: Fault Tolerance

Database systems: coarse-grained fault tolerance
« If fault happens, fail the query (or rerun from the beginning)

MapReduce: fine-grained fault tolerance
 Rerun failed tasks, not the entire query

€databricks

€databrick:

Google Official Blog

Insights from Googlers into our products, technology, and the Google culture

Sorting 1PB with MapReduce

Posted: Friday, November 21, 2008 8+1) 53 wiweet 38| [y 73]

At Google we are fanatical about organizing the world's information. As a result, we spend a lot of time finding
better ways to sort information using MapReduce, a key component of our software infrastructure that allows us to
run multiple processes simultaneously. MapReduce is a perfect solution for many of the computations we run
daily We were writing it to 48,000 hard drives (we did not use the full capacity of these

rans - disks, though), and every time we ran our sort, at least one of our disks managed

inou Lo break (thisis not surprising at all given the duration of the test, the numberof
expe disks involved, and the expected lifetime of hard disks). ,

spirit. You can think of it as an Olympic event for computations. By pushing the boundaries of these types of
programs, we learn about the limitations of current technologies as well as the lessons useful in designing next
generation computing platforms. This, in turn, should help everyone have faster access to higher-quality
information.

MapReduce
Checkpointing-based Fault Tolerance

Checkpoint all intermediate output

* Replicate them to multiple nodes
 Upon failure, recover from checkpoints
* High cost of fault-tolerance (disk and network 1/O)

Necessary for PBs of data on thousands of machines

What if I have 20 nodes and my query takes only 1 min?

€databricks

Spark
Unified Checkpointing and Rerun

Simple idea: remember the lineage to create an RDD, and recompute
from last checkpoint.

When fault happens, query still continues.

When faults are rare, no need to checkpoint, i.e. cost of fault-tolerance
is low.

€databricks

BD vs DB: What's Really Ditferent?

Monolithic vs layered storage & compute

» Databases becoming more layered
« Although Big Data still far more flexible than DB

Fault-tolerance
 Databases mostly coarse-grained fault-tolerance, assuming faults are rare

» Big Data mostly fine-grained fault-tolerance, with new strategies in Spark to
mitigate faults at low cost

€databricks

Convergence

Databases evolving towards Big Data
« Decouple storage from compute

 Provide alternative programming models
« Semi-structured data (JSON, XML, etc)

Big Data evolving towards Databases
« Schema beyond key-value
 Separation of logical vs physical plan
« Query optimization
« More optimized storage formats

€databricks

What we talked about today”
3 Vs of Big Data

GFS & MapReduce & Hadoop

Spark (RDD, DataFrame)

Convergence of Big Data and Databases

€databricks

Whole-stage Codegen

Fusing operators together so the generated code looks like hana
optimized code:

- |dentify chains of operators (“stages”)

- Compile each stage into a single function

- Functionality of a general purpose execution engine; performance as if hand
built system just to run your query

See paper Efficiently Compiling Efficient Query Plans for Modern Hardware,
Neumann, VLDB 2011

€databricks

Whole-stage Codegen: Planner

€databricks

Whole-stage Codegen: Spark as a Compiler

* long count = ©;

| for (ss_item sk in store sales) {
Project if (ss_item sk == 1000) {

T ﬁ count += 1,

_ |
—

}
€databricks

Vectorized Decoding

. , Parquet
Vectorized decoding in 1.6

« Parquet + built-in cache Parquet

» Inspired by X100/Vectorwise n20

€databricks

11M
rows/s

90M
rows/s

War Stories

€databricks

Pipelines will fail

me
me
me
me
me
me
me

me

€databricks

Inbox

Inbox

Inbox

Inbox

Inbox

Inbox

Inbox

Inbox

URGENT: Internal error during audit log delivery (prod) for runid 2 on 2016-10-20 - Audit log delivery pipeline f:

URGENT: Internal error during audit log delivery (prod) for runid 1 on 2016-10-20 - Audit log delivery pipeline f:

URGENT: Internal error during audit log delivery (prod) for runld 3 on 2016-10-10 - Audit log delivery pipeline f:

URGENT: Internal error during audit log delivery (prod) for runid 1 on 2016-10-11 - Audit log delivery pipeline f

URGENT: Internal error during audit log delivery (prod) for runid 2 on 2016-10-08 - Audit log delivery pipeline f:

URGENT: Internal error during audit log delivery (prod) for runid 1 on 2016-10-08 - Audit log delivery pipeline f:

URGENT: Internal error during audit log delivery (prod) for runld 3 on 2016-10-07 - Audit log delivery pipeline f:

URGENT: Internal error during audit log delivery (prod) for runld 2 on 2016-10-06 - Audit log delivery pipeline f:

10/22/16

10/21/16

10/12/16

10/12/16

10/9/16

10/9/16

10/8/16

10/7/16

Troubleshooting

The audit logging pipeline fails several times a month. Usually it succeeds on the retries. Here are some of the
common error cases. These error cases can be found in the digest emails sent by the pipeline:

1. Caused by: java.io.IOException: /path/date=2016-10-25/blah.gz.parquet already exists

This is due to S3 eventual consistency. The retry should succeed

2. IllegalStateException: Cannot call methods on a stopped SparkContext.

Something happened to the application. Probably all executors were lost and Spark killed the application. This is an open
source bug and should be fixed soon. Retries with on-demand instances should succeed.

3. Job 25 cancelled part of cancelled job group 3155545341997344370 5242158252298278457 job-84798-run-1-
action-88481

Job seems to have timed out. May want to increase job timeout or use more instances, as load for this day may be high

€databricks

4. java.io.IOException: Failed to delete /path/date=2016-10-10/blah.gz.parquet

Another S3 eventual consistency problem. Retry should succeed
5. Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 256 in

stage 76.0 failed 4 times, most recent failure: Lost task 256.3 in stage 76.0 (TID 39492, 10.0.78.66):
java.io.IOException: No space left on device

Caused by too much shuffle. Increasing EBS volume should help.
6. Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 92 in

stage 5.0 failed 4 times, most recent failure: Lost task 92.3 in stage 5.0 (TID 16616, 10.0.27.18):
java.io.IOException: Stream is corrupted

Caused by EC2 instances in bad states. Workarounds will be merged to new version of Spark (2.1 or newer). Currently
(2016/11/30) we use a customized spark image in prod job which seems fixed the issue.

€databricks

Bad data problems

One day one table had 8 columns
The next day it had 32 columns
What happened?

€databricks

Customer Stories

Attempting to join ~400M rows x ~2B rows
Keep hitting out of memory issues
After join get 4 Trillion rows

Table A: Table B:
A1, A2, valueA B1, B2, valueB

\/

Join on: A1 = B1
groupBy A1, A2, B2
Sum valueA * valueB

€databricks

€databricks

Table A:
A1, A2, valueA

Table B:
B1, B2, valueB

y

groupBy A1, A2
sum valueA

groupBy B1, B2
sum valueB

Join on: A1 = B1

Customer Stories

Customer job spuriously fails with ~ ExecutorlLostFailure

16/09/29 17:36:44 WARN AkkaRpcEndpointRef: Error sending message [message =
Heartbeat(18,[Lscala.Tuple2;@79d26749,BlockManagerId(18, 10.49.188.112, 37861))] in 1 attempts
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by

spark.rpc.askTimeout at
org.apache.spark.rpc.RpcTimeout.org$apache$sparkrpcRpcTimeout$$createRpcTimeoutException(RpcEnv.scala:214)

€databricks

They are running an iterative ML algorithm. The futures timed out errors all
seem to be happening around the "collect” phase

They have 50 workers -> 400 tasks. Each task is trying to send about 25 MB

to the driver. Total bytes received by the driver will be around 25 * 400 ->
10 GB.

The driver starts GC'ing after several iterations (as it received 10 GB on the
previous iterations). GC + Network saturation prevent the Driver and
Master from acknowledging the Executor heartbeats.

Executors get killed because the master didn't receive any heartbeats
(even though the executors tried for 2 minutes)

Job fails because they use rdd.localCheckpoint

€databricks

groupByKey + collect causing large network traffic to Driver
Replace with treeAggregate

€databricks

[Lessons Learned

€databricks

Unit testing

#1 thing you will do when working in industry

Helps set contracts
Makes sure other people don’t break those contracts

Good to learn frameworks like jUnit, scalatest, python unittest, mocha
N JS

€databricks

Solve problems at the source

Requires clearly defining the problem & understanding the root cause
Sometimes not easy, may be time consuming
Doing it right has better rate of return

€databricks

Aggregate classes of problems and try building
holistic solutions

Customers will want faster horses. Build them a car instead

Try solving bigger picture problem rather than manifestations
of problem

Otherwise end up with fragmented solutions that work
somewhere but not everywhere

€databricks

Leverage whats out there

Someone probably has faced anissue you're facing
Someone probably has already solved the issue you’re facing
Use that someone’s work

Don’t reinvent the wheel

€databricks

Scope work as much as you can ahead of time

-lgure out requirements
Provide the simplest possible solution that meets these requirements

KISS (Keep it simple, stupid)
Think about evolvability over time

€databricks

Extra Spark Slides

€databricks

Why is it so hard”

Data is a mess
« Siloed across many sources
 Saved in different formats
* Always has “bad” values
« Evolves over time

Scalability is an issue
 Require fault tolerance

 Data skew is a pain
@databricks

Why 1s 1t so hard”

Pipelines are growing complex

Anomaly detection
- Learn models offline <

- Use online + continuous

learning ﬁ D

loT events event stream @
from Kafka

ETL into long term storage
- Prevent data loss

Status monitoring - Preventduplicates Interactively
- Handle late data debug issues
- Aggregate on windows - consistency

on event time

€databricks

The hard part of ML

Machine -
Resource Monitoring
. Management
Configuration Data Collection Serving
Infrastructure

Analysis Tools

Feature

Pri
Extraction 0CesS

Management Tools

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

€databricks

Apache® Spark™ to the rescue

Unified engine for large-scale data processing
« Batch / Offline
 Streaming/ Online

Fast

Easy to use
« Great APls
 Available in Python, Scala, Java, R, SQL

Huge Ecosystem
« 1,000+ contributors on GitHub
« Canrun Standalone, on Yarn, on Mesos, on the Cloud, on premise
« Can connect to many data sources and consume many data formats
« Spark Packages

€databricks

Spark has 1000s of users

Sox /) airbnb
B v airbn
facebook s Microsoft SEA

LT
"EEFamazon , —y -
%¥ webservices e CapitalOne N X

ING)

. . DR Yelefoniica Liczq sie ludzie
achs UBER Taobao.com
salesforce

Qe R
&
Tenceni &R BaidM&EE REUTERS
€databricks

Cowd ________________onPem

 Elastic * Rigid

* Low cost of ownership * You're in control

* Pay-as-you-go e Can customize according to niche
* No up-front infrastructure burden requirements

* No infra-maintenance burden

€databricks

Data Sources

HHHHHHH

HSASE
§€ kafka /W
cassandra
di

' FESHENE e

= N
vE e B

€databricks

Data Formats

UNSTRUCTURED SEMI-STRUCTURED STRUCTURED

r: r_ r</> r{ : } " Parquet
TXT

Ccsv XML

JSON Ml_-ISQRL ©

More flexible I// More efficient storage and performance
s APACHE a

oark

€databricks:

Google File System

€databricks

GES Assumptions

» “Files are huge by traditional standards”
“‘Component failures are the norm rather than the exception”

 Files are append-only

« “Mostfiles are mutated by appending new data rather than overwriting
existing data”

« Why s this ok given our workload types?
« What are the advantages of this?
 Alternative techniques & types of storage systems for when updates required

@databricks (Quotes are from GFS paper)

File Splits

Example:

Large File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

6440MB

Lets color-code tHhem l’

Block Block Block Block Block Block
6 100 101

64MB 64MB 64MB 64MB 64MB 64MB 64MB 40MB

Files are composed of set of blocks

e.g., Block Size = 64MB Typically 64MB in size

Each block is stored as a separate file in the
€databricks local file system (e.g. NTFS)

Block Placement

Example:

ol

Node 1 Node 2 Node 3 Node 4 Node 5

¢.g., Replication factor = 3
Default placement policy:
« First copy is written to the node

€databricks

GES Architecture

(NameNodeH BackupNode l
»

// \\
/ \

4 N\
/ \

\
~
L]
-
/

Failures, Failures, Failures

GFS paper: “Component failures are the norm
rather than the exception.”

Failure types:

a Disk errors and failures
a DataNode failures

a Switch/Rack failures

a NameNode failures

a Datacenter failures

€databricks

Open Source version of GFS

There is an open source version called Hadoop Distributed File System
(HDFS). More on Hadoop later.

€databricks

What about indexes”

GFS does not support indexes out of the box!
When is it OK not to have them as an option?
How does it affect workloads?

What about workloads that need them?

€databricks

s e
Hortonworks

HBase and HDFS Motivation

Understanding file system usage in HBase

Enis Soztutar

ol et ,‘h“ - HBase as a database depends on FileSystem for many things
. } o

- HBase has to work over HDFS, linux & windows

o - HBase is the most advanced user of HDFS

\/\/heﬂ 1S 1t OK not * For tuning for 10 performance, you have to understand how HBase does
10

How does it affec

V\/hat abOUt WOI’L< MapReduce HBase
Large files Large files
Few random seek A lot of random seek
Batch oriented Latency sensitive
High throughput
Failure handling at task level Durability guarantees with sync
Computation moves to data Computation generates local data

Large number of open files

@databricks https://www.slideshare.net/enissoz/hbase-and-hdfs-understanding-filesystem-usage slide 33

GES summary

Store large, immutable (append-only) files
Scalability

 Reliability

« Availability

« Append-only, no indices

Note on another buzzword:

Cloudera & other industry vendors popularized the buzzword “Data
Lake” — basically just another name for HDFS.

€databricks

MapReduce

€databricks

[REVIEW] Summary: Kinds of Parallelism sk |

L SQL

sQL et sak
 Inter-Query \%

pipeline

 Intra-Query

1. Inter-Operator ﬁ

Most of Big Data (Hadoop, Spark, etc.)

2. Intra-Operator (partitioned)

€databricks

MapReduce Programming Model
Data type: key-value records

Map function:
<Kin9 vin) ~ “St(Kintew vinter>

Reduce function:
(Kinters STV ar)) == liST(K i, Vo)

outr Y out

€databricks

Input key*value Input key*value

pairs pairs
ma ma
Data store 1 P Data store n P
(key/ (key 2.\(key 3, (key/ (key 2.\(key 3,
valIes...) values...) valuT...) valTs...) values...) Tlues...)
\J
== Barrier == : Aggregates intermediate values by output key
key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
reduce reduce reduce
final key 1 final key 2 final key 3
values values values

€databricks

Hello World of Big Data: Word Count

Input Map Shuffle & Sort Reduce Output
[the, 1 [4
: brown, 1
the quick brown, 2
brown fox, 2
fox how, 1
_________________ |8 now, 1
the, 3
the fox
ate the 1]
mouse
_________________ - ate, 1
now, 1 ate, 1
b cow, 1
rown, 1 mouse, 1 oI¥
how now mouse, 1
brown quick, 1
cow

€databricks | |

MapReduce Execution
Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish

€databricks

MapReduce Fault Recovery

It a task fails, re-run it and re-fetch its input
« Requirement: inputis immutable

It a node fails, re-run its map tasks on others
« Requirement: task result is deterministic & side effect is idempotent

€databricks

3.6 Backup Tasks

Dealing with Stragglers 0o o o sttt o e

taken for a MapReduce operation is a “straggler”: a ma-
chine that takes an unusually long time to complete one
of the last few map or reduce tasks in the computation.
Stragglers can arise for a whole host of reasons. For ex-

: ! — ample, a machine with a bad disk may experience fre-

M | SCO n fl gU red/b rO ke ﬂ n O d eS - S l OW ta S kS quent correctable errors that slow its read performance
from 30 MB/s to 1 MB/s. The cluster scheduling sys-

) ! tem may have scheduled other tasks on the machine,

v\/ h a t S t h e ﬂ X? causing it to execute the MapReduce code more slowly
due to competition for CPU, memory, local disk, or net-

» B a C ku p Ta S kS » — la U n C h 2 n d CO py O]C work bandwidth. A recent problem we experienced was

a bug in machine initialization code that caused proces-

sor caches to be disabled: computations on affected ma-

S lOV\/eSt ta S |’<S O n a n Oth e r n O Cl e chines slowed down by over a factor of one hundred.

. .
Ve _NAave 4 _ocne Mecnan (1] () A - 416 ne _nNron-

lem of stragglers. When a MapReduce operation is close
to completion, the master schedules backup executions
of the remaining in-progress tasks. The task is marked

OIINPICICA WIIC V L] DILIIIALY O C DACKUP

44% speedups in MR paper

What are requirements for this to work?

execution completes. We have tuned this mechanism so
that it typically increases the computational resources

! used by the operation by no more than a few percent.
H OW d O yO U d eﬁ n e S l OV\/7 We have found that this significantly reduces the time

ple, the sort program described in Section 5.3 takes 44%
longer to complete when the backup task mechanism is
disabled.

Cost? Backup tasks are not free, why?
@databricks

€databricks

Improving MapReduce Performance in Heterogeneous Environments

Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, Ion Stoica
University of California, Berkeley
{matei ,andyk, adj, randy, stoica}@cs .berkeley.edu

Abstract

MapReduce is emerging as an important programming
model for large-scale data-parallel applications such as
web indexing, data mining, and scientific simulation.
Hadoop is an open-source implementation of MapRe-
duce enjoying wide adoption and is often used for short
jobs where low response time is critical. Hadoop’s per-
formance is closely tied to its task scheduler, which im-
plicitly assumes that cluster nodes are homogeneous and
tasks make progress linearly, and uses these assumptions
to decide when to speculatively re-execute tasks that ap-
pear to be stragglers. In practice, the homogeneity as-
sumptions do not always hold. An especially compelling
setting where this occurs is a virtualized data center, such
as Amazon’s Elastic Compute Cloud (EC2). We show
that Hadoop’s scheduler can cause severe performance
degradation in heterogeneous environments. We design
a new scheduling algorithm, Longest Approximate Time
to End (LATE), that is highly robust to heterogeneity.
LATE can improve Hadoop response times by a factor
of 2 in clusters of 200 virtual machines on EC2.

1 Introduction

Today’s most popular computer applications are Internet
cervices with millione of neere The cheer valime of data

The MapReduce model popularized by Google is very
attractive for ad-hoc parallel processing of arbitrary data.
MapReduce breaks a computation into small tasks that
run in parallel on multiple machines, and scales easily to
very large clusters of inexpensive commodity comput-
ers. Its popular open-source implementation, Hadoop
[2], was developed primarily by Yahoo, where it runs
jobs that produce hundreds of terabytes of data on at least
10,000 cores [4]. Hadoop is also used at Facebook, Ama-
zon, and Last.fm [5]. In addition, researchers at Cornell,
Carnegie Mellon, University of Maryland and PARC are
starting to use Hadoop for seismic simulation, natural
language processing, and mining web data [5, 6].

A key benefit of MapReduce is that it automatically
handles failures, hiding the complexity of fault-tolerance
from the programmer. If a node crashes, MapReduce re-
runs its tasks on a different machine. Equally impor-
tantly, if a node is available but is performing poorly,
a condition that we call a straggler, MapReduce runs a
speculative copy of its task (also called a “backup task”)
on another machine to finish the computation faster.
Without this mechanism of speculative execution', a job
would be as slow as the misbehaving task. Stragglers can
arise for many reasons, including faulty hardware and
misconfiguration. Google has noted that speculative ex-
ecution can improve job response times by 44% [1].

MapReduce Summary

By providing a data-parallel model, MapReduce greatly simplified
cluster computing:

« Automatic division of job into tasks

« Locality-aware scheduling

 Load balancing

 Recovery from failures & stragglers w/ backup tasks

Also flexible enough to model a lot of workloads. ..

€databricks

MapReduce Summary (continued)

Focused on intra-operator parallelism
Allows for simple mid-query fault tolerance
Allows for Straggler handling

€databricks

Hadoop

Open-sourced by Yahoo!
« modeled after the two Google papers

Two components:
 Storage: Hadoop Distributed File System (HDFS)
« Compute: Hadoop MapReduce

Huge investment by VCs: three large, well-fTunded companies & ~6 other distributions
* Cloudera: S1Binfunding, IPO this year
« Hortonworks: $248M in funding, IPO last year
« MapR: $280M in funding
« Distributions (pre-consolidation): Amazon, Microsoft, Intel, Teradata, {8M, EMEc/ Pivetat

€databricks

MapReduce: A major step backwards

By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)
[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we'll begin here v
to discuss it, since the recent trade press has been filled with news of the revolution of so-called "cloud computing." This paradig!
processors working in parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up a larg
much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to te
software tool called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the M:

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represen
data-intensive applications. MapReduce may be a good idea for writing certain types of general-purpose computations, but to the

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

€databricks

