
Big Data, Spark, & Databricks
Andy Konwinski
Nov 14, 2017, CS285 Guest Lecture, Stanford

Many slides re-used from:
Burak Yuvaz, Databricks. Berkeley CS186 Spring 2017
Reynold Xin, Databricks. Berkeley CS186 2016
Matei Zaharia, Databricks. Processing Big Data with Small Programs
Michael Franklin, SQL, NoSQL, NewSQL?. Berkeley CS186 2013



Who Am I

Technical Cofounder at Databricks
Co-creator of Apache Mesos
Apache Spark Committer
PhD CS, UC Berkeley;  BS CS, U of Wisconsin



Agenda

• What is Big Data?  What is it used for?
• Brief history of Big Data analytics
• Apache Spark & Databricks
• Demo & discussion



What is Big Data?





Gartner’s Definition

“Big data” is high-volume, -velocity and -variety information assets 
that demand cost-effective, innovative forms of information 
processing for enhanced insight and decision making.

“Big data” is high-volume, -velocity and -variety information assets 
that demand cost-effective, innovative forms of information 
processing for enhanced insight and decision making.



3+1 Vs of Big Data

Volume: data size

Velocity: rate of data coming in

Variety (most important V): data sources, formats, workloads

Veracity: data cleanliness, completeness, accuracy



3+1+N Vs of Big Data

Volume: data size

Velocity: rate of data coming in

Variety (most important V): data sources, formats, workloads

Veracity: data cleanliness



What is it used for?
Why is it valuable?



Motivation: Business Use Cases

Security
• Fraud detection
• Anomaly detection for breaches

Examples:
• ~$16B/yr lost to CC fraud
• ~15M victims/yr
• CapitalOne detects fraud in 

real-time



Motivation: Business Use Cases

Machine Learning: Recommendation Systems
• Recommend products/social connections/features

Examples:
• Riot Games – League of Legends

– In-store purchase of outfits/cosmetics for characters. A main profit driver
– Identifying unsportsperson like conduct in chat rooms & warning or banning

• Hotels.com – recommend hotels/car rentals



Agenda

• What is Big Data?  What is it used for? 

• Brief history of Big Data analytics
• Apache Spark & Databricks
• Demo & discussion



History & Roots

2003 - Google published GFS
2004 - Google published MapReduce
2006 - Hadoop created
2009 - Spark created (as part of Mesos project)
2013 – Databricks created



Challenges Google faced

Data size growing (volume & velocity)

Complexity of analysis increasing (variety)
- Massive ETL (web crawling), Machine learning



Why didn’t Google just use an 
existing database?



Why didn’t Google just use databases?

No databases at the time worked at that scale
It cost less to build than buy (vendors charge by TB or machine)

A lot of unstructured data: web pages, images, videos

SQL not right programming model for their tasks



The Big Data solution

Single machine can’t process or store all the data

Only solution is to distribute general storage & processing over 
clusters.



Data-Parallel Models

Restrict the programming interface so that the system can do more 
automatically

“Here’s an operation, run it on all of the data”
- I don’t care where it runs (you schedule that)
- In fact, feel free to run it twice on different nodes
- Similar to “declarative programming” in databases



2003 2004



Pair and share: what is MapReduce?



Problems with MapReduce that led to Spark

1. Programming model
2. Performance



Agenda

• What is Big Data?  What is it used for?
• Brief history of Big Data analytics

• Apache Spark & Databricks
• Demo & discussion



MapReduce Challenge #1: Programming model

Most real applications require multiple MR steps
• Google indexing pipeline: 21 steps
• Analytics queries (e.g. groupby + count): 2-5 steps
• Iterative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code
• 21 MR steps -> 21 mapper and reducer classes
• Lots of boilerplate code per step

MR Jobs as execution 
primitives compiled by  
higher layer 
abstractions...

In reality, 90+% of MR jobs 
are generated by Hive SQL



Programming model

#include "mapreduce/mapreduce.h"

// User’s map function
class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& 

input)
{
const string& text = 

input.value();
const int n = text.size();
for (int i = 0; i < n; ) {
// Skip past leading whitespace
while (i < n && 

isspace(text[i]))
i++;

// Find word end
int start = i;
while (i < n && 

!isspace(text[i]))
i++;

if (start < i)
Emit(text.substr(

start,i-start),"1");
}

}
};

REGISTER_MAPPER(SplitWords);

// User’s reduce function
class Sum: public Reducer {
public:
virtual void Reduce(ReduceInput* 

input)
{
// Iterate over all entries with 

the
// same key and add the values
int64 value = 0;
while (!input->done()) {
value += StringToInt(

input->value());
input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}
};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {
ParseCommandLineFlags(argc, argv);

MapReduceSpecification spec;
for (int i = 1; i < argc; i++) {
MapReduceInput* in= 

spec.add_input();
in->set_format("text");
in->set_filepattern(argv[i]);
in-

>set_mapper_class("SplitWords");
}

// Specify the output files     
MapReduceOutput* out = 

spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("Sum");

// Do partial sums within map
out->set_combiner_class("Sum");

// Tuning parameters 
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result)) 

abort();
return 0;
}

Full Google WordCount: Spark WordCount:

val file = spark.textFile(“hdfs://...”)
val counts = file.flatMap(line => line.split(“ ”))

.map(word => (word, 1))

.reduceByKey(_ + _)

counts.save(“out.txt”)



MapReduce Challenge #2: Performance

Each MR job writes all output to disk
Lack of more primitives such as data broadcast

Spark provides data caching and broadcast primitives
Many many other performance optimizations

e.g. in-memory columnar storage
1.6+ has relational optimizer



Performance

0.96
110

0 25 50 75 100 125

Logistic Regression

4.1
155

0 30 60 90 120 150 180

K-Means Clustering Hadoop MR

Spark

Time per Iteration (s)



Spark history & overview

Started in Berkeley in 2010; donated to Apache Foundation in 2013

Programmability: Domain Specific Language in Scala / Java / Python / R
• Functional transformations on collections
• 5 – 10X less code than MR
• Interactive use from Scala / Python REPL

Performance:
• General DAG of tasks (i.e. multi-stage MR)
• Richer primitives: in-memory cache, torrent broadcast, etc
• Can run 10 – 100X faster than MR



Spark stack



Top Applications

29%

36%

40%

44%

52%

68%

Faud Detection / Security

User-Facing Services

Log Processing

Recommendation

Data Warehousing

Business Intelligence



Spark has 1000s of users



Note： not a scientific comparison.



“Spark is the Taylor Swift
of big data software.”

- Derrick Harris, Fortune



When should I use Spark?



When Should I Use Spark?

I	want	to	know	how	much	of	my	product	was	sold	per	country.



When Should I Use Spark?

I	want	to	know	how	much	of	my	product	was	sold	per	country.



When Should I Use Spark?

I	want	to	serve	the	user	preferences	of	a	customer	when	they	
click	“Settings”	on	my	website.



When Should I Use Spark?

I	want	to	serve	the	user	preferences	of	a	customer	when	they	
click	“Settings”	on	my	website.



When Should I Use Spark?

I	want	to	extract	features	from	thousands	of	newspaper	
articles	and	classify	whether	an	article	belongs	in	the	
“Economy”	or	“Politics”	section.



When Should I Use Spark?

I	want	to	extract	features	from	thousands	of	newspaper	
articles	and	classify	whether	an	article	belongs	in	the	
“Economy”	or	“Politics”	section.



When Should I Use Spark?

Given	a	map,	I	want	to	figure	out	the	fastest	way	to	get	from	
point	A	to	point	B.



When Should I Use Spark?

Given	a	map,	I	want	to	figure	out	the	fastest	way	to	get	from	
point	A	to	point	B.



When Should I Use Spark?

I	want	to	centralize	all	the	data	my	sensors	are	generating	all	
around	the	world.	I	would	like	to	push	my	data	somewhere	
from	these	sensors.



When Should I Use Spark?

I	want	to	centralize	all	the	data	my	sensors	are	generating	all	
around	the	world.	I	would	like	to	push	my	data	somewhere	
from	these	sensors.



When Should I Use Spark?

I	have	sensors	generating	data	every	15	seconds.	I	want	to	
analyze	the	data	but	first	enrich	it	with	regional	information	
and	aggregate	per	region	in	15	minute	windows.



When Should I Use Spark?

I	have	sensors	generating	data	every	15	seconds.	I	want	to	
analyze	the	data	but	first	enrich	it	with	regional	information	
and	aggregate	per	region	in	15	minute	windows.



2012

Spark started
At Berkeley

2010

Original
research

paper

2017

Deep Learning
Integrations.
Support for

Transactions

2014

Spark 1.0 & libraries
(SQL, ML, GraphX)

2015

DataFrames
Tungsten

ML Pipelines
Dataset

R

2016

Structured Streaming
Code generation

Vectorization

Spark’s life story

2013

Databricks
started.

Spark donated
to Apache



RDDs and DataFrames
...and how to use them.



Spark Core API Evolution

Early adopters

Data Scientists
Statisticians
R users
PyData

Users

Understand
MapReduce

& functional APIs

Resilient Distributed Datasets (RDDs) DataFrames



DataFrames in Spark

> head(filter(df, df$waiting < 50))  # an example in R
##  eruptions waiting
##1     1.750      47
##2     1.750      47
##3     1.867      48

Distributed abstraction for tabular data in Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, R), thus easy to learn



RDD

DataFrame



Spark RDD Execution

Java/Scala
frontend

JVM
backend

Python
frontend

Python
backend

opaque closures
(user-defined functions)



Spark DataFrame Execution

DataFrame
frontend

Logical Plan

Physical 
execution

Catalyst
optimizer

Intermediate representation for computation 



Spark DataFrame Execution

Python
DF

Logical Plan

Physical
execution

Catalyst
optimizer

Java/Scala
DF SQL

Intermediate representation for computation 

Simple wrappers to create logical plan



DataFrames and Spark SQL

Efficient library for structured data (data with a known schema)
• Two interfaces: SQL for analysts + apps, DataFrames for programmers

Optimized computation and storage, similar to RDBMS

SIGMOD 2015



Execution Steps

Logical 
Plan

Physical 
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL

Code

Generator

Data 
Frames



DataFrame API

DataFrames hold rows with a known schema and offer relational 
operations on them through Spark’s DataFrame relational API

users = spark.sql(“select * from users”)

ca_users = users.where(users.state == “CA”)

ca_users.count()

ca_users.groupBy(“name”).avg(“age”)



Why DataFrames?

Based on data frame concept in R and Python
• Spark is the first to make this a declarative API

Integrates with other data science libraries
• MLlib, GraphFrames, …

Google trends for “data frame”



Other High-Level APIs

Machine Learning Pipelines
Modular API based on scikit-learn

GraphFrames
Relational + graph operations

Structured Streaming
Declarative streaming API in Spark 2.0 Many high-level data science 

APIs can be declarative

tokenizer TF LR

modelDataFrame



DEMO



Thanks! Questions?
andy@databricks.com

Many slides re-used from:
Burak Yuvaz, Databricks. Berkeley CS186 Spring 2017
Reynold Xin, Databricks. Berkeley CS186 2016
Matei Zaharia, Databricks. Processing Big Data with Small Programs
Michael Franklin, SQL, NoSQL, NewSQL?. Berkeley CS186 2013



What’s really different?

SQL on Big Data (Hadoop/Spark) vs SQL in Databases?

Two perspectives:

1. Flexibility in data and compute model

2. Fault-tolerance



Traditional Database Systems (Monolithic)

Physical Execution Engine (Dataflow)

SQL

Applications

One way (SQL) in/out and data must be structured



Data-Parallel Engine (Spark, MR)

SQL DataFrame ML

Decoupled storage, low vs high level compute
Structured, semi-structured, unstructured data

Schema on read, schema on write

Big Data Systems (Layered)



Evolution of Database Systems
Decouple Storage from Compute

Physical Execution Engine (Dataflow)

SQL

Applications

Physical Execution Engine (Dataflow)

SQL

Applications

Traditional 2014 - 2016

IBM Big Insight
Oracle

EMC Greenplum
…

support for nested data (e.g. JSON)



Perspective 2: Fault Tolerance

Database systems: coarse-grained fault tolerance
• If fault happens, fail the query (or rerun from the beginning)

MapReduce: fine-grained fault tolerance
• Rerun failed tasks, not the entire query



We were writing it to 48,000 hard drives (we did not use the full capacity of these 
disks, though), and every time we ran our sort, at least one of our disks managed 
to break (this is not surprising at all given the duration of the test, the number of 
disks involved, and the expected lifetime of hard disks). 



MapReduce
Checkpointing-based Fault Tolerance

Checkpoint all intermediate output
• Replicate them to multiple nodes
• Upon failure, recover from checkpoints
• High cost of fault-tolerance (disk and network I/O)

Necessary for PBs of data on thousands of machines

What if I have 20 nodes and my query takes only 1 min?



Spark
Unified Checkpointing and Rerun

Simple idea: remember the lineage to create an RDD, and recompute
from last checkpoint.

When fault happens, query still continues.

When faults are rare, no need to checkpoint, i.e. cost of fault-tolerance 
is low.



BD vs DB: What’s Really Different?

Monolithic vs layered storage & compute
• Databases becoming more layered
• Although Big Data still far more flexible than DB

Fault-tolerance
• Databases mostly coarse-grained fault-tolerance, assuming faults are rare
• Big Data mostly fine-grained fault-tolerance, with new strategies in Spark to 

mitigate faults at low cost



Convergence

Databases evolving towards Big Data
• Decouple storage from compute
• Provide alternative programming models
• Semi-structured data (JSON, XML, etc)

Big Data evolving towards Databases
• Schema beyond key-value
• Separation of logical vs physical plan
• Query optimization
• More optimized storage formats



What we talked about today?

3 Vs of Big Data

GFS & MapReduce & Hadoop

Spark (RDD, DataFrame)

Convergence of Big Data and Databases



Whole-stage Codegen

Fusing operators together so the generated code looks like hand 
optimized code:

- Identify chains of operators (“stages”)
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance as if hand 

built system just to run your query

See paper Efficiently Compiling Efficient Query Plans for Modern Hardware, 
Neumann, VLDB 2011



Whole-stage Codegen: Planner



Scan

Filter

Project

Aggregate

long count = 0;
for (ss_item_sk in store_sales) {

if (ss_item_sk == 1000) {
count += 1;

}
}

Whole-stage Codegen: Spark as a “Compiler”



Parquet
in 1.6

11M
rows/s

Parquet
in 2.0

90M
rows/s

Vectorized decoding
•Parquet + built-in cache
• Inspired by X100/Vectorwise

Vectorized Decoding



War Stories



Pipelines will fail



Troubleshooting

The	audit	logging	pipeline	fails	several	times	a	month.	Usually	it	succeeds	on	the	retries.	Here	are	some	of	the	
common	error	cases.	These	error	cases	can	be	found	in	the	digest	emails	sent	by	the	pipeline:

1. Caused by: java.io.IOException: /path/date=2016-10-25/blah.gz.parquet already exists

This is due to S3 eventual consistency. The retry should succeed

2. IllegalStateException: Cannot call methods on a stopped SparkContext.

Something happened to the application. Probably all executors were lost and Spark killed the application. This is an open 
source bug and should be fixed soon. Retries with on-demand instances should succeed.

3. Job 25 cancelled part of cancelled job group 3155545341997344370_5242158252298278457_job-84798-run-1-
action-88481

Job seems to have timed out. May want to increase job timeout or use more instances, as load for this day may be high



4. java.io.IOException: Failed to delete /path/date=2016-10-10/blah.gz.parquet

Another S3 eventual consistency problem. Retry should succeed

5. Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 256 in 
stage 76.0 failed 4 times, most recent failure: Lost task 256.3 in stage 76.0 (TID 39492, 10.0.78.66): 
java.io.IOException: No space left on device

Caused by too much shuffle. Increasing EBS volume should help.

6. Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 92 in 
stage 5.0 failed 4 times, most recent failure: Lost task 92.3 in stage 5.0 (TID 16616, 10.0.27.18): 
java.io.IOException: Stream is corrupted

Caused by EC2 instances in bad states. Workarounds will be merged to new version of Spark (2.1 or newer). Currently 
(2016/11/30) we use a customized spark image in prod job which seems fixed the issue.



Bad data problems

One day one table had 8 columns
The next day it had 32 columns
What happened?



Customer Stories

Attempting to join ~400M rows x ~2B rows
Keep hitting out of memory issues
After join get 4 Trillion rows





Customer Stories

Customer job spuriously fails with `ExecutorLostFailure`

16/09/29 17:36:44 WARN AkkaRpcEndpointRef: Error sending message [message = 
Heartbeat(18,[Lscala.Tuple2;@79d26749,BlockManagerId(18, 10.49.188.112, 37861))] in 1 attempts 
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by 
spark.rpc.askTimeout at 
org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcEnv.scala:214)



They are running an iterative ML algorithm. The futures timed out errors all 
seem to be happening around the "collect" phase
They have 50 workers -> 400 tasks. Each task is trying to send about 25 MB 
to the driver. Total bytes received by the driver will be around 25 * 400 -> 
10 GB.
The driver starts GC'ing after several iterations (as it received 10 GB on the 
previous iterations). GC + Network saturation prevent the Driver and 
Master from acknowledging the Executor heartbeats.
Executors get killed because the master didn't receive any heartbeats 
(even though the executors tried for 2 minutes)
Job fails because they use rdd.localCheckpoint



groupByKey + collect causing large network traffic to Driver
Replace with treeAggregate



Lessons Learned



Unit testing

#1 thing you will do when working in industry

Helps set contracts
Makes sure other people don’t break those contracts
Good to learn frameworks like jUnit, scalatest, python unittest, mocha 
in JS



Solve problems at the source

Requires clearly defining the problem & understanding the root cause
Sometimes not easy, may be time consuming
Doing it right has better rate of return



Aggregate classes of problems and try building 
holistic solutions

Customers will want faster horses. Build them a car instead
Try solving bigger picture problem rather than manifestations 
of problem
Otherwise end up with fragmented solutions that work 
somewhere but not everywhere



Leverage what’s out there

Someone probably has faced an issue you’re facing
Someone probably has already solved the issue you’re facing
Use that someone’s work
Don’t reinvent the wheel



Scope work as much as you can ahead of time

Figure out requirements
Provide the simplest possible solution that meets these requirements
KISS (Keep it simple, stupid)
Think about evolvability over time



Extra Spark Slides



Why is it so hard?

Data is a mess
• Siloed across many sources
• Saved in different formats
• Always has “bad” values
• Evolves over time

Scalability is an issue
• Require fault tolerance
• Data skew is a pain



Why is it so hard?
Pipelines are growing complex

IoT events 
from Kafka

ETL into long term storage
- Prevent data loss
- Prevent duplicatesStatus monitoring

- Handle late data
- Aggregate on windows 

on event time

Interactively 
debug issues
- consistency

event stream

Anomaly detection
- Learn models offline
- Use online + continuous 

learning



The hard part of ML

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf



Apache® Spark™ to the rescue

Unified engine for large-scale data processing
• Batch / Offline
• Streaming / Online

Fast
Easy to use

• Great APIs
• Available in Python, Scala, Java, R, SQL

Huge Ecosystem
• 1,000+ contributors on GitHub
• Can run Standalone, on Yarn, on Mesos, on the Cloud, on premise
• Can connect to many data sources and consume many data formats
• Spark Packages



Spark has 1000s of users



Cloud On-Prem
• Elastic
• Low	cost	of	ownership
• Pay-as-you-go
• No up-front	infrastructure	burden
• No	infra-maintenance	burden

• Rigid
• You’re	in	control
• Can	customize according	to	niche	
requirements



Data Sources



Data Formats



Google File System



GFS Assumptions

• “Files are huge by traditional standards”
• “Component failures are the norm rather than the exception”
• Files are append-only 
• “Most files are mutated by appending new data rather than overwriting 

existing data”
• Why is this ok given our workload types?
• What are the advantages of this?
• Alternative techniques & types of storage systems for when updates required

(Quotes are from GFS paper)



File Splits

Large	File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

…

6440MB

Block	
1

Block	
2

Block	
3

Block	
4

Block	
5

Block	
6

Block	
100

Block	
101

64MB 64MB 64MB 64MB 64MB 64MB

…

64MB 40MB

Block	
1

Block	
2

Let’s color-code them

Block	
3

Block	
4

Block	
5

Block	
6

Block	
100

Block	
101

e.g., Block Size = 64MB
Files are composed of set of blocks
• Typically 64MB in size
• Each block is stored as a separate file in the 

local file system (e.g. NTFS)



Block Placement

Default placement policy:
• First copy is written to the node creating the file (write affinity)
• Second copy is written to a data node within the same rack

(to minimize cross-rack network traffic)
• Third copy is written to a data node in a different rack

(to tolerate switch failures)

Node	5Node	4Node	3Node	2Node	1

Block	
1

Block	
3

Block	
2

Block	
1

Block	
3

Block	
2

Block	
3

Block	
2

Block	
1

e.g., Replication factor = 3



GFS Architecture
NameNode BackupNode

DataNode DataNode DataNode DataNode DataNode

(heartbeat, balancing, replication, etc.)



Failure types:
q Disk errors and failures
q DataNode failures
q Switch/Rack failures
q NameNode failures
q Datacenter failures

Failures, Failures, Failures

GFS paper: “Component failures are the norm 
rather than the exception.”

NameNode

DataNode



Open Source version of GFS

There is an open source version called Hadoop Distributed File System 
(HDFS). More on Hadoop later.



What about indexes?

GFS does not support indexes out of the box!
When is it OK not to have them as an option?
How does it affect workloads?
What about workloads that need them?



What about indexes?

GFS does not support indexes out of the box!
When is it OK not to have them as an option?
How does it affect workloads?
What about workload that need them?

https://www.slideshare.net/enissoz/hbase-and-hdfs-understanding-filesystem-usage slide	33



GFS Summary

• Store large, immutable (append-only) files
• Scalability
• Reliability
• Availability
• Append-only, no indices

Note on another buzzword:
Cloudera & other industry vendors popularized the buzzword “Data 
Lake” – basically just another name for HDFS.



MapReduce



[REVIEW] Summary: Kinds of Parallelism

• Inter-Query

• Intra-Query
1. Inter-Operator

2. Intra-Operator (partitioned)

SQL
SQL SQL SQL

SQL

DBMS

g(f(x2))

h(g(f(x1)))

f(x3)

⨝

scanscan

mat

⨝
scanscan

mat

⨝

pipeline bushy

⨝

scanscan

⨝

scanscan

⨝

scanscan

Most	of	Big	Data	(Hadoop,	Spark,	etc.)



MapReduce Programming Model

Data type: key-value records

Map function:
(Kin, Vin) -> list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) -> list(Kout, Vout)





Hello World of Big Data: Word Count

the quick
brown 

fox

the fox 
ate the 
mouse

how now
brown 

cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output



MapReduce Execution

Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish



MapReduce Fault Recovery

If a task fails, re-run it and re-fetch its input
• Requirement: input is immutable

If a node fails, re-run its map tasks on others
• Requirement: task result is deterministic & side effect is idempotent



Dealing with Stragglers

Misconfigured/broken nodes = slow tasks
What’s the fix? 
”Backup Tasks” = launch 2nd copy of 
slowest tasks on another node
44% speedups in MR paper
What are requirements for this to work?
How do you define slow?
Cost? Backup tasks are not free, why?





MapReduce Summary

By providing a data-parallel model, MapReduce greatly simplified 
cluster computing:

• Automatic division of job into tasks
• Locality-aware scheduling
• Load balancing
• Recovery from failures & stragglers w/ backup tasks

Also flexible enough to model a lot of workloads…



MapReduce Summary (continued)

Focused on intra-operator parallelism
Allows for simple mid-query fault tolerance
Allows for Straggler handling



Hadoop

Open-sourced by Yahoo!
• modeled after the two Google papers

Two components:
• Storage: Hadoop Distributed File System (HDFS)
• Compute: Hadoop MapReduce

Huge investment by VCs: three large, well-funded companies & ~6 other distributions
• Cloudera: $1B in funding, IPO this year
• Hortonworks: $248M in funding, IPO last year
• MapR: $280M in funding
• Distributions (pre-consolidation): Amazon, Microsoft, Intel, Teradata, IBM, EMC/Pivotal




