C daLab Worksheets

Percy Liang

STATS285 — October 23, 2017

My research...

Executable semantic parsing

What is the largest city in Europe by population?

Executable semantic parsing

What is the largest city in Europe by population?

2

Executable semantic parsing

Executable semantic parsing

Executable semantic parsing

What is the largest city in Europe by population?

 $\mathsf{Cities} \cap \mathsf{ContainedBy}(\mathsf{Europe})$

Executable semantic parsing

Executable semantic parsing

 $\mathsf{argmax}(\mathsf{Cities} \cap \mathsf{ContainedBy}(\mathsf{Europe}),\mathsf{Population})$

Executable semantic parsing

Reading comprehension

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

The current research process

Step 1: come up with a good idea

Step 1: come up with a good idea

Step 2: implement it

• Obtain data, clean it, convert between formats

Step 1: come up with a good idea

- Obtain data, clean it, convert between formats
- Obtain code, compile it, email authors, reimplement

Step 1: come up with a good idea

- Obtain data, clean it, convert between formats
- Obtain code, compile it, email authors, reimplement
- Run code, get different results

Step 1: come up with a good idea

- Obtain data, clean it, convert between formats
- Obtain code, compile it, email authors, reimplement
- Run code, get different results
- Run experiments, keep track of provenance

Step 1: come up with a good idea

- Obtain data, clean it, convert between formats
- Obtain code, compile it, email authors, reimplement
- Run code, get different results
- Run experiments, keep track of provenance

Previous method

Dataset 1

88% accuracy

New method 92% accuracy

Previous method

Dataset 1

Dataset 2

88% accuracy 72% accuracy New method 92% accuracy 77% accuracy

Previous method

- Dataset 1 Dataset 2
- Dataset 3

88% accuracy 72% accuracy ? New method 92% accuracy 77% accuracy ?

	Previous method	New method	
Dataset 1	88% accuracy	92% accuracy	
Dataset 2	72% accuracy	77% accuracy	
Dataset 3	?	?	
Dataset 4	?	?	
Dataset 5	?	?	
Dataset 6	?	?	
	?	?	

Previous method 88% accuracy

New method 92% accuracy

Γ	$= \nabla$
L	
L	
L	

Previous method 88% accuracy using sampling New method 92% accuracy using optimization

Γ	\neg
L	
L	
L	
L	

Previous method 88% accuracy using sampling L_2 regularization New method 92% accuracy using optimization L_1 regularization

Previous method 88% accuracy using sampling L_2 regularization 5-fold cross-validation New method 92% accuracy using optimization L_1 regularization 10-fold cross-validation

Lack of good broad overview

Question: Which methods work well on what types of tasks?

Lack of good broad overview

Question: Which methods work well on what types of tasks?

Towards a solution...

MLcomp.org (2008)

MLcomp is a free website for **objectively comparing** machine learning programs across various datasets for multiple problem **domains**.

Do a comprehensive evaluation of your new algorithm. Upload your program and run it on existing datasets. Compare the results with those obtained by other programs.

Find the best algorithm (program) for your dataset.

Upload your dataset and run existing programs on it to see which one works best.

Machine learning

Machine learning

Machine learning

An end-to-end system

An end-to-end system

worksheets.codalab.org

provenance, so you can be a more efficient researcher.

Bundles

Worksheets

Bundle: an **arbitrary** file/directory (code or data or results)

0x191aad8fa0ae4741b3123b15a8d59efa

Uploaded by user (code or data):

Uploaded by user (code or data):

Derived by running an **arbitrary** command:

Bundles

Search for existing code and data:

\$ cl search mnist; cl search nips2015

Search for existing code and data:

\$ cl search mnist; cl search nips2015

Upload new code or data:

\$ cl upload cnn.py

Search for existing code and data:

\$ cl search mnist; cl search nips2015

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Search for existing code and data:

\$ cl search mnist; cl search nips2015

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

\$ cl cat exp2/stdout

Search for existing code and data:

```
$ cl search mnist; cl search nips2015
```

Upload new code or data:

```
$ cl upload cnn.py
```

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

\$ cl cat exp2/stdout

Manage runs:

```
$ cl kill exp2; cl rm exp2
```


Search for existing code and data:

```
$ cl search mnist; cl search nips2015
```

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

```
$ cl cat exp2/stdout
```

Manage runs:

\$ cl kill exp2; cl rm exp2

Run an entire pipeline with a different dataset or newer version of your code:

\$ cl mimic mnist exp2 cifar -n exp3

Search for existing code and data:

```
$ cl search mnist; cl search nips2015
```

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

```
$ cl cat exp2/stdout
```

Manage runs:

\$ cl kill exp2; cl rm exp2

Run an entire pipeline with a different dataset or newer version of your code:

\$ cl mimic mnist exp2 cifar -n exp3

Copy from one CodaLab instance to another:

\$ cl add bundle mnist stanford::pliang-demo main::pliang-demo

Real-world problems require efforts of entire community

• Old way: use intermediate metrics, rhetoric

- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

Immutability

Inspiration: Git version control system

Immutability

Inspiration: Git version control system

- All programs/datasets/runs are write-once
- Enable collaboration without chaos
- Capture the research process in a **reproducible** way

Building on previous work

Building on previous work

Building on previous work

A collaborative ecosystem

Modules interoperate via standard interfaces (Internet)

A collaborative ecosystem

Individual benefits:

- Avoid duplicate work
- Publicize tools/datasets

Modules interoperate via standard interfaces (Internet)

A collaborative ecosystem

Modules interoperate via standard interfaces (Internet)

Individual benefits:

- Avoid duplicate work
- Publicize tools/datasets

Communuty benefits:

- Serial combination of components
- Parallel ensembles for better predictions (look at any ML competition)

Bundles

Worksheets

24

Bundle graphs are about **truth**; what about **interpretation**?

Bundle graphs are about **truth**; what about **interpretation**?

Worksheet: an arbitrary document with embedded bundles

Bundle graphs are about **truth**; what about **interpretation**?

Worksheet: an arbitrary document with embedded bundles

Inspiration: Mathematica notebook, Jupyter notebook

A worksheet

We now train the classifier with more data.

A worksheet

We now train the classifier with more data.

Program : **SVMlight** Arguments : -n 2000 Dataset : **thyroid** Error : 2.6% Time : 1 second

A worksheet

We now train the classifier with more data.

Program : **SVMlight** Arguments : -n 2000 Dataset : **thyroid** Error : 2.6% Time : 1 second

Notice that the error remains the same, suggesting that we've saturated our model.

Heading

You can type in **any** markdown with any ETEX.

uuid	name	summary	state	desc.
0xc19b66	nanc-1m.txt	[uploaded]	ready	1 million sentences from the NANC corpus

Two New Orleans riverboat casinos declared bankruptcy in early June after just two months One of the boats was owned by Harrah 's Jazz partner Christopher Hemmeter .

Heading You can type uuid 0xc19b66	nanc-1m.txt(0xc19b66) Two New Orleans data data run1(0xad3d69) run2(0x992ced) - stdout 415 - stdout 872	run-count(0xd4815b) - stdout 1 1 2 4 3 9 Is r just two months	
## Heading			
You can type in **any** markdown with a	ny \$MEX\$.		
[dataset nanc-1m.txt] {0xc19b6600afe74e9	1a441e6d13e823ead} — — —		
<pre>% display contents / maxlines=2 [dataset nanc-1m.txt]{0xc19b6600afe74e9</pre>		— — — — — — <mark>render bun</mark>	<mark>dle contents</mark>
% schema mySchema — — — — — —			customize table schema
% add query command "s/.*grep / s/	WC.*/"		
% add count /stdout			
% display table mySchema			
[run data:nanc-1m.txt : cat data gre [run data:nanc-1m.txt : cat data gre	p Montreal wc -1]{0xad3d69e3 p Toronto wc -1]{0x992ced33@	873eb4702ab89dc4991aa0f82} e6e848aa8cfb8988c12bb221}	
<pre>% display graph /stdout xlabel=time yla [run : for x in {150}; do echo -e "\$</pre>	<pre>bel=accuracy maxlines=30 — - x \$((x*x))"; done]{0xd4815bf67</pre>	— — <mark>graph points in a TSV file</mark> 7bc4ab492a4c28744224c87}	
Largest bundles:			
% display table uuid:uuid:[0:8] name su	mmary data_size		
% search size=.sortlimit=3 — — –			embed search results

Use case: executable papers

Learning with Relaxed Supervision.

Jacob Steinhardt and Percy Liang.

Advances in Neural Information Processing Systems (NIPS), 2015.

Volodymyr Kuleshov and Percy Liang.

Calibrated Structured Prediction.

Advances in Neural Information Processing Systems (NIPS), 2015.

Structured prediction presents new challenges for calibration: the output space is large, and users may issue many types of probability queries (e.g., marginals) on the structured output. To address these challenges,

- We extend the notion of calibration so as to handle various subtleties pertaining to the structured setting, and then provide a simple recalibration method that trains a binary classifier to predict probabilities of interest.
- We explore a range of classifier features appropriate for structured recalibration, and demonstrate their efficacy on three real-world datasets.

uuid	name	description	bundle_type	created	dependencies	command	data_size	state
0xbef082	run- bash		run	2015-10-30 21:57:09	b1:codalab,b2:data	bash b1/experiments/gen-data- fig1.sh b1 b2	913K	ready

The above figure shows that our predictions (green line) are well-calibrated in every setting. In the multiclass setting, we outperform an existing approach which individually recalibrates one-vs-all classifiers and normalizes their probability estimates. This suggests that recalibrating for a specific event (e.g. the highest scoring class) is better than first estimating all the multiclass probabilities.

ry, we unfortunately cannot make it available on CodaLab, but have a copy of SNOPT, the same scripts should work to install it (note: permissions; e-mail jsteinhardt@cs.stanford.edu if you need help

created	dependencies	command	data_size	state
kefile:				
d	dependencies	command	data_size	state
0-30 08:44:24			58.9K	ready

ble correctly:

dependencies	command	data_size	state
:src,:snopt	export SNOPT_HOME=snopt/snopt7; cp src/* .; make	323K	ready
bin/main		99.8K	ready

Use case: benchmarking results

predictions	#questions	avg recall	avg precision	f1 of avg R and avg P	avg f1 (accuracy)
webquestions-predictions-emnlp2013	2032	0.413	0.480	0.444	0.357
webquestions-predictions-acl2014	2032	0.466	0.405	0.433	0.399
webquestions-predictions-jhu-acl2014	2032	0.458	0.517	0.486	0.330
webquestions-predictions-jhu-acl2014-sp-workshop	2032	0.480	0.337	0.396	0.354
webquestions-predictions-msr2014	2032	0.525	0.447	0.483	0.453
webquestions-predictions-kitt-ai-naacl2015	2032	0.545	0.526	0.535	0.443
webquestions-predictions-aqqu-cikm2015	2032	0.604	0.498	0.546	0.494
webquestions-predictions-agenda-tacl2015	2032	0.557	0.505	0.530	0.497
webquestions-predictions-acl2015-msr-stagg	2032	0.607	0.528	0.565	0.525

If you have run your system on WebQuestions, please upload your predictions to your own worksheet (click 'My Worksheet'). Then type the following commands:

cl upload <webquestions-predictions-file> # Or just click 'Upload bundle'

cl macro webquestions/eval <webquestions-predictions-file> -n <webquestions-evaluation-file>

Use case: software tutorials

TensorFlow

name: tensorflow uuid: 0xf04bb563380d4049a72d297a87522678 owner: pliang permissions: you(all) public(read)

? Keyboard Shortcuts

Mode: View Edit source

TensorFlow is Google's new deep learning library. Conveniently, a docker image with all the dependencies has already been created, so to use TensorFlow in CodaLab, all you have to do is to upload your program and run it.

Example 1: artificial data

uuid		name		data_size		desc.	
0x543b83		tf-example.py		809			
uuid	name	summary		data_size	time	state	desc.
0x6b96ca	run-python	! python tf-example.py{0x54}		4.7k	6.0s	ready	

Example 2: MNIST

uuid	n	ame	data_size	desc.			
0x447d9e mnist		nnist	11.1m	classic digits dataset			
0x6d6d8d src		rc	10.7k	simple linear classifier			
uuid	name	summary		data_size	time	state	desc.
0x2ebd30	run-python	! python src{0x6d	l}/linear.py	12.6k	33.0s	ready	run on GPUs

Use case: research development environment

[demo]

System architecture

Note: workers can be run by the user

A case study...

SQuAD dataset for reading comprehension

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

SQuAD dataset for reading comprehension

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Rank	Model	EM	F1
1 Sep 20, 2017	AIR-FusionNet (ensemble) Microsoft Business AI Solutions Team	78.842	85.936
2 Aug 16, 2017	DCN+ (ensemble) Salesforce Research	78.706	85.619
3 Jul 25, 2017	Interactive AoA Reader (ensemble) Joint Laboratory of HIT and iFLYTEK Research	77.845	85.297
3 Sep 01, 2017	r-net (ensemble) Microsoft Research Asia http://aka.ms/rnet	78.244	85.206
4 [Aug 21, 2017]	Reinforced Mnemonic Reader (ensemble) NUDT and Fudan University https://arxiv.org/abs/1705.02798	77.678	84.888
5 Sep 08, 2017	AIR-FusionNet (single model) Microsoft Business AI Solutions team	75.968	83.900
6 Jul 17, 2017	r-net (single model) Microsoft Research Asia http://aka.ms/rnet	75.705	83.496
6 Jul 14, 2017	smarnet (ensemble) Eigen Technology & Zhejiang University	75.989	83.475
7 Aug 18, 2017	Reg-RaSoR (single model) Google NY, Tel-Aviv University	75.789	83.261
8 Jul 10, 2017	DCN+ (single model) Salesforce Research	74.866	82.806
8	SLQA (ensemble model)	75.212	82.681

Must submit model on CodaLab to evaluate on test set

Evaluation using "mimic"

CS224N class competition

CS224N SQuAD Test Set Leaderboard

This is the real deal, evaluating against the secret test set. Your score on this leaderboard will count towards your final grade. You have very limited submissions on this leaderboard, and be sure to try submitting well before the deadline to make sure things work.

Max submissions per day: 3. Max submissions total: 3.

Rank	F1 Score	Exact Match	Status	Submitter	Created	Description	Quota
#1 置	77.465	68.478	SUCCESS	budi71	2017-03-19, 5:11:12 PM		0/3 today 3/3 total
#2 洋	77.323	67.974	SUCCESS	pujun	2017-03-22, 2:33:02 AM		0/3 today 2/3 total
#3 😡	76.838	66.779	SUCCESS	yairc	2017-03-20, 11:59:09 PM		0/3 today 2/3 total
#4	76.544	66.348	SUCCESS	xf1280	2017-03-20, 8:41:46 PM		0/3 today 2/3 total
#5	74.139	64.083	SUCCESS	jandress	2017-03-22, 2:16:25 AM	SQuAD Goals	0/3 today 3/3 total
#6	72.77	61.932	SUCCESS	kshitiz	2017-03-21, 3:41:06 AM		0/3 today 2/3 total
#7	71.548	60.978	SUCCESS	tcliu	2017-03-21, 10:53:19 PM		0/3 today 2/3 total
#8	70.733	60.149	success	joeyasperger	2017-03-19, 11:18:53 PM		0/3 today 1/3

- 162 teams developed models over 4 weeks
- Top score was 77.5 F1 (would have been top 3 score if 3 months earlier

Adversarial evaluation

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest **quarterback** ever to play in a Super Bowl at age 39. The past record was held by **John Elway**, who led the Broncos to victory in **Super Bowl XXXIII** at age **38** and is currently Denver's Executive Vice President of Football Operations and General Manager.

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Adversarial evaluation

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest **quarterback** ever to play in a Super Bowl at age 39. The past record was held by **John Elway**, who led the Broncos to victory in **Super Bowl XXXIII** at age **38** and is currently Denver's Executive Vice President of Football Operations and General Manager. Jeff Dean **is the name of the quarterback who was** 37 in Champ Bowl XXXIV.

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Adversarial evaluation

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest **quarterback** ever to play in a Super Bowl at age 39. The past record was held by **John Elway**, who led the Broncos to victory in **Super Bowl XXXIII** at age **38** and is currently Denver's Executive Vice President of Football Operations and General Manager. Jeff Dean **is the name of the quarterback who was** 37 in Champ Bowl XXXIV.

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Results on public models on CodaLab

Model	Original F1	Adversarial F1
ReasoNet-E	81.1	49.8
SEDT-E	80.1	46.5
BiDAF-E	80.0	46.9
Mnemonic-E	79.1	55.3
Ruminating	78.8	47.7
jNet	78.6	47.0
Mnemonic-S	78.5	56.0
ReasoNet-S	78.2	50.3
MPCM-S	77.0	50.0
RaSOR	76.2	49.5
BiDAF-S	75.5	45.7

Results on public models on CodaLab

Model	Original F1	Adversarial F1
ReasoNet-E	81.1	49.8
SEDT-E	80.1	46.5
BiDAF-E	80.0	46.9
Mnemonic-E	79.1	55.3
Ruminating	78.8	47.7
jNet	78.6	47.0
Mnemonic-S	78.5	56.0
ReasoNet-S	78.2	50.3
MPCM-S	77.0	50.0
RaSOR	76.2	49.5
BiDAF-S	75.5	45.7
Humans	92.6	89.2

New research enabled by CodaLab

Final remarks

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.We run arbitrary Unix commands in a docker container.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure. You can connect your own worker or setup a local installation.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.
- **Q**: How is CodaLab different from releasing a VM?
- **A**: VMs are monolithic black boxes.

CodaLab bundles are immutable data/code modules that can be composed.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.
- **Q**: How is CodaLab different from releasing a VM?
- **A**: VMs are monolithic black boxes.

CodaLab bundles are immutable data/code modules that can be composed.

- **Q**: Why can't I just release my code on GitHub?
- A: Releasing code is a big step forward, but code has unspecified dependencies. CodaLab encapsulates these.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.
- **Q**: How is CodaLab different from releasing a VM?
- A: VMs are monolithic black boxes.
 CodaLab bundles are immutable data/code modules that can be composed.
- **Q**: Why can't I just release my code on GitHub?
- A: Releasing code is a big step forward, but code has unspecified dependencies. CodaLab encapsulates these.
- **Q**: What's the relationship to CodaLab Competitions?
- A: It's a sister project led by Isabelle Guyon.

Competitions brings people together and bundles/worksheets provides a rich foundation.

Open challenges

Reproducibility (community):

What's the incentive to upload an executable paper?

How do we encourage creation of reusable modules?

How do we build a community?

Open challenges

Reproducibility (community):

What's the incentive to upload an executable paper?

How do we encourage creation of reusable modules?

How do we build a community?

Productivity (individual):

Is there enough flexibility to support interactive development?

Can we scale to really large-scale experiments?

Tradeoff?

efficiency

reproducibility

Folk wisdom: reproducibility slows down research.

Tradeoff?

Folk wisdom: reproducibility slows down research.

Our claim: reproducibility accelerates research (with the right tool).

CodaLab contributors

Evelyne Viegas (Microsoft) Christophe Poulain (Microsoft) Shaunak Kishore Francis Cleary (Tivix) Eric Carmichael (Tivix) Pujun Bhatnagar (Stanford) Stephen Koo (Stanford) Eric Li (Stanford) Konstantin Lopyrev (Stanford) Max Wang (Stanford) Fabian Chan (Stanford)

We're looking for strong developers!

Supported by:

Thank you!