
Introduction to Containers
Gregory M. Kurtzer

@SylabsIO
@SingularityApp

Introductions...

Gregory M. Kurtzer
CEO and Founder, Sylabs Inc.

Previously spent ~20 years at LBNL/DOE as their HPC
Systems Architect

Well known for founding some open source projects
such as Warewulf, CentOS Linux, and most recently,
Singularity.

General Overview of Linux

The Kernel

The Linux kernel was created by Linus Torvalds and released as an open source
project in the summer of 1991.

Ker·nel - /ˈkərnl/

noun: the central or most important part of something;

“The Linux kernel is the interface between the hardware and the runtime”

Linux Distributions

A “Linux Distribution” is the collection of applications, libraries, services, and
interfaces that all run on top of the Linux kernel.

The Linux Stack

The kernel provides the interface layer
between the hardware and software.

Applications, libraries, services, user
interfaces, etc., all sit on top of the kernel in

the “user space”.

The combination of both the “kernel space”
and the “user space” are provided by the

Linux Distribution.

Applications, Libraries, Services, etc.

Kernel

CPU Memory Devices

Th
e

Li
nu

x
D

is
tri

bu
tio

n

Containers in a Nutshell

What are containers?

Containers are entire encapsulations of the
software stack (not including kernel).

Applications, Libraries, Services, etc.

Kernel

CPU Memory DevicesWe can either use the host’s user space, or
we can prescriptively create one that is
independent from the host.

Complete Encapsulation

Inside this container is the entire user space
software environment.

Running Your Container

When you run your container, it virtually
replaces the host’s runtime stack and shares
the host’s kernel, so it is very performant and
reproducible.

Distribution

Kernel

CPU Memory Devices

Container

Reproducing Environments?

To duplicate or share work, one needs access to the exact same environment. If that
environment is not available, it must be reproduced.

This requires all of the original components as well as a complete recipe of steps
necessary to reproduce the same outcome.

Is it always possible? How do you know it is equivalent? Is it good enough?

Reproducibility and Mobility

You can run the container on different hosts,
facilitating reproducibility and mobility.

Host 1 Host 2

SCP, FTP, HTTP,
Sylabs Cloud

Containers are all the Rage!

● Containers have changed the distribution paradigm for software

● Makes it easy to leverage other people’s work

● Creates reproducible software environments

● Empowers the end-user

● Similar like a VM without the performance impact

● Facilitates microservice based workloads by integrating into orchestration

About Singularity

Problem Statement

Scientists needed High Performance Computing (HPC) centers
worldwide to support this new technology called containerization to meet

their needs of reproducibility, mobility, and freedom

But existing container systems fall short as their use cases were
designed for root owned microservice based workflows; security and

usage models are incompatible with HPC

A Brief History of Time

● Development of Singularity started in October, 2015

● First release (version 1.0) April 14th, 2016

● Feedback quickly demonstrated that it needed a change in design

○ Changes included a different container image format thus warranted a new major version

○ 1.x was very short lived

● With lots of help, 2.0 was developed quickly and released on June 1st, 2016

● 3.0.0 was just recently released as stable, with massive lists of new features!

Designed for Security, Mobility, and Performance

Singularity is differentiated by
two primary categories:

● Runtime Engine: Designed to integrate when running
compute based workloads, isolate when running service
workloads, support security and workflow needs of HPC
resources while enabling the growing enterprise cloud
tools including like: Kubernetes, Mesos, Kubeflow and
Docker/OCI.

● Container Format: The Singularity image format builds
completely reproducible environments, trusted software
stacks, and optimized for compute based workloads.

Runtime Engine

Container Format

Adoption Skyrocketed Worldwide

● Summit @ Oak Ridge National Lab
The fastest supercomputer in the world, designed from the ground up by IBM
and Nvidia specifically to run AI applications and workloads via Singularity

● Sierra & Sequoia @ Lawrence Livermore National Lab (still
confirming)

● ABCI @ AIST

● Titan @ Oak Ridge National Lab

● Stampede & Stampede2 @ TACC

● Theta @ Argonne National Lab

● Astra (ARM!) @ Sandia National Lab

● MareNostrum @ Barcelona Supercomputing Center

● Comet & Gordon @ San Diego Supercomputing Center

● Sherlock @ Stanford

Singularity Technical Overview

1. SIF: single file container format (cryptographically verifiable and extendable runtime format)

2. No persistent global daemon processes

3. Supports non-root users running containers as themselves

4. Blocks privilege escalation within the container

5. “Bring Your Own Environment” (BYOE) usage model

6. Supports HPC workflows and architectures (MPI, resource managers, InfiniBand, FSs, etc.)

7. Supports GPUs natively (Nvidia Cuda based and AMD GFX8/9, etc.)

What is a container, under the hood?

Even though we metaphorically use a shipping container to describe a container, in
actuality, the typical container solutions (e.g. Docker, RunC, RKT, etc.) are actually

quite complicated.

Container Format Comparison

Singularity, being a single file as well as the runtime format, simplifies the usage,
administration and trust greatly!

Docker, OCI, etc... Singularity

Singularity Container Format Features

Reproducible Archival Mobile Controls Compliant

Singularity Runtime Features

Accelerated GPUs Designed For Performance Supports GUIs Orchestration Agnostic

SecureStandards CompliantJobs and ServicesCompatible with HPC

How You Can Make Use Of Containers
With Singularity Today

Examples and use-cases

$ cat recipe.def
Bootstrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/x86_64/
Include: yum

%post
yum -y install vim-minimal

%runscript
exec /usr/bin/vi “$@”
$ singularity build centos-vim.sif recipe.def
…

Building a Container with Singularity

You can use the container as follows...
$ singularity shell centos-vim.sif
$ singularity exec centos-vim.sif sleep 1
$ singularity run centos-vim.sif testfile.txt

Singularity containers are also executable, so you can ‘run’ them directly
$./centos-vim.sif testfile.txt

You can move the container onto any other Linux system with Singularity
installed, and use the container directly
$ scp centos-vim user@examplehost.com:
$ ssh user@examplehost.com
$./centos-vim newtestfile.txt

Example Usage of Singularity

mailto:user@examplehost.com

$ singularity sign centos-vim.sif
Signing image: centos-vim.sif
No OpenPGP signing keys found, autogenerate? [Y/n] y
Enter your name (e.g., John Doe) : Greg
Enter your email address (e.g., john.doe@example.com) : g@sylabs.io
Enter optional comment (e.g., development keys) : demokeys
Generating Entity and OpenPGP Key Pair... Done
Enter encryption passphrase :
…
Uploaded key successfully!
Enter key passphrase:
Signature created and applied to centos-vim.sif
$

Cryptographically signed containers

$ singularity push centos-vim.sif library://gmk/demo/centos-vim:latest
INFO: Now uploading centos-vim.sif to the library
 108.16 MiB / 108.16 MiB [=============================] 100.00% 13.75 MiB/s 7s
INFO: Setting tag latest
$

Using the Sylabs Container Library

$ singularity pull library://gmk/demo/centos-vim:latest
 108.16 MiB / 108.16 MiB [=============================] 100.00% 35.00 MiB/s 3s
$ singularity verify centos-vim_latest.sif
Verifying image: centos-vim_latest.sif
INFO: key missing, searching key server for KeyID: 58D8405A30E12DE6...
INFO: key retreived successfully!
Store new public key F56D95BD3AFAC6FA3423911A58D8405A30E12DE6? [Y/n] y
Data integrity checked, authentic and signed by:

Greg (demokeys) <g@sylabs.io>, KeyID 58D8405A30E12DE6
$

Pulling and Validating a Container

$ singularity pull shub://GodloveD/lolcow:latest
 87.57 MiB / 87.57 MiB [===============================] 100.00% 80.54 MiB/s 1s
$./lolcow_latest.sif

/ Q: What's tiny and yellow and very, \
| very, dangerous? A: A canary with the |
\ super-user password. /

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Working with Singularity Hub

Building a Singularity container (SIF) from DockerHub
$ singularity build tensorflow.sif docker://tensorflow/tensorflow:latest
…
Running a shell directly from DockerHub
$ singularity shell docker://ubuntu:latest
Singularity ubuntu_latest.sif:~/demo> cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.1 LTS"
Singularity ubuntu_latest.sif:~/demo> exit
$ singularity exec docker://centos:latest cat /etc/redhat-release
CentOS Linux release 7.5.1804 (Core)

Working with Docker

Build a container with the latest version of Python
$ singularity build python.sif docker://python:latest
…
$ singularity exec python.sif python3 --version
Python 3.7.1
$ singularity exec python.sif python3 hello.py
Hello, World!
$ cat hello.py | singularity exec python.sif python3
Hello, World!
$ singularity shell python.sif
Singularity python.sif:~> python3 hello.py
Hello, World!
Singularity python.sif:~> exit

Blurring the Line Between Container and Host

$ singularity exec --nv docker://tensorflow/tensorflow:latest-gpu python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> x1 = tf.constant([1,2,3,4])
>>> x2 = tf.constant([5,6,7,8])
>>> result = tf.multiply(x1, x2)
>>> print(result)
Tensor("Mul:0", shape=(4,), dtype=int32)
>>> exit()
$

Accessing the Host’s GPU With Tensorflow

In Summary...

With Singularity, you can encapsulate the
entire user space runtime environment
including workflows, applications, and data,
all into a single file which is guaranteed to
be reproducible.

Introduction to Containers
Gregory M. Kurtzer

@SylabsIO
@SingularityApp

