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Who am I?
● Research Scientist at Google Research 

○ Natural Language Understanding/Machine Translation

● PhD Thesis
○ Connectionist Multi-Sequence Modelling

Supervisors: Dr. Fatos Yarman Vural - Middle East Technical University
            Dr. Kyunghyun Cho - New York University

● Research Interests
○ Sequence to sequence models: NMT
○ Multilingual Models for NLP
○ Multi-task, Continual learning, Meta-learning
○ Trainability of Neural Networks
○ Used to do some computational neuroscience 
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#synapses
[wiki]

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
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#synapses
[wiki]

NMT with Attention
Resnet50 
[25-50M]

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
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Unstoppable Force
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Unstoppable Force vs Immovable Object
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Scaling Up Neural Networks

Machine Learning Memes for Convolutional Teens

https://www.facebook.com/profile.php?id=287764591678048&ref=br_rs
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Transformer
[400M]

#synapses
[wiki]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
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Transformer
[400M]

#synapses
[wiki]

Facebook ResNeXt101
Open AI GPT2

MSR ZeRO
NVidia Megatron-LM

[1-8B]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://openai.com/blog/better-language-models/
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/abs/1909.08053
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Transformer
[400M]

#synapses
[wiki]

Facebook ResNeXt101
Open AI GPT2

MSR ZeRO
NVidia Megatron-LM

[1-8B]

M4: 
Massively Multilingual Massive 

Machine Translation
[80B]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://openai.com/blog/better-language-models/
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/abs/1909.08053
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
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Transformer
[400M]

#synapses
[wiki]

Facebook ResNeXt101
Open AI GPT2

MS ZeRO
NVidia Megatron-LM

[1-10B]

M4: 
Massively Multilingual Massive 

Machine Translation
[80B]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://openai.com/blog/better-language-models/
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/abs/1909.08053
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
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Towards Universal Translation

● Number of Languages: 103 languages 
→ Single Neural Network Capable of Translating between any two.
→ Massively Multilingual, Multi-task Setup
→ Open domain dataset, crawled from Web 25 billion examples

● Number of Neurons: Model Size
→ Orders of magnitude larger than traditional translation models (Transformer 400M)
→ Massive in terms of number of trainable parameters (6B - 90B parameters)
→ Very deep and wide (1024 layers deep, 16k wide) 



Stats 285

Outline

● Prototyping - Engineering perspective
● Debugging - ML perspective
● Hyper-parameter Search - ML perspective
● Reproducibility - Engineering perspective
● Bonus: Coordination
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Machine 
Translation

in a nutshell



© Google - Confidential and Proprietary 

30 trillion
sentences translated per year

Google Translate



Sentence-level quality is improving
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What is behind? 

The Paradigm:

The Task:
Neural Machine Translation

Sequence to Sequence Learning



Figure Credit: Jan Chorowski

Sequence to Sequence Refresher



Neural Machine Translation
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Transformer: Attention is All You Need - Vaswani et al. 2017

~400 million parameters 
in total

(weights or connections)
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Multilingual Neural Machine Translation
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Our goal
 

Develop a universal translation model 
(i.e,. a single model across 1000+ languages)

“Perhaps the way [of translation] is to descend, from each 
language, down to the common base of human communication --
the real but as yet undiscovered universal language -- and then
re-emerge by whatever particular route is convenient.”

Warren Weaver (1949)



1. Massively Multilingual MT
    A/ Data
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Massively Multilingual Neural Machine Translation, Aharoni et al. NAACL 2019
Massively Multilingual NMT in the Wild: Findings and Challenges, Arivazhagan et al. 2019

https://arxiv.org/abs/1903.00089
https://arxiv.org/abs/1907.05019
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A/Data

Sketch of Power Law Learning Curves [Hestness et al. 2017]



Stats 285

● Any Sequence
● Arbitrary length

● Sequence-to-Sequence
○ Machine Translation
○ Sentiment Analysis
○ Speech Recognition
○ Image Captioning

Now at Massive Amounts

● BERT (Devlin et al. 2018):   Wikipedia 
● GPT-2 (Radford et al. 2019) :   Reddit 
● M4 (Arivazhagan et al. 2019):   Entire Internet

Convert Compute into Data

● AlphaZero, OpenAI Five: Self-Play
● AlphaStar: Multi-agent 

A/Data
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Log Scale

High Resource
( > 100M examples )

Low Resource
( < 1M examples )

{English, French, German, ...}                {Yoruba, Sindhi, Hawaiian, ...}

A/Data



Massively Multilingual MT - Arivazhagan et al. 2019

Stats 285

Large Gains on Low-Resource Languages with Multilinguality



2. Massive Neural Networks
A/ Compute
B/ Models

Training Deeper Neural Machine Translation Models with Transparent Attention, Bapna et al. EMNLP 2018
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, Shazeer et al. ICLR 2017

Stats 285

https://aclweb.org/anthology/D18-1338/
https://arxiv.org/abs/1811.06965
https://arxiv.org/pdf/1701.06538.pdf
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A/Compute

AI and Compute - Damodei and Hernandez 2018



● Training on 1024 TPU-v3 chips
● Bfloat16 (Brain Floating Point)
● GPipe: Micro-Batch Pipeline Parallelism

(Huang et al., 2019)
○ Rematerialization 

(gradient checkpointing)
○ Large batches (4M examples)

Stats 285

A/Compute
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A/Compute - Tensor Processing Units

https://cloud.google.com/tpu/

https://cloud.google.com/tpu/
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A/Compute - BFloat16

https://cloud.google.com/tpu/docs/bfloat16

https://cloud.google.com/tpu/docs/bfloat16


● Training on 1024 TPU-v3 chips
● Bfloat16 (Brain Floating Point)
● GPipe: Micro-Batch Pipeline Parallelism

(Huang et al., 2019)
○ Rematerialization 

(gradient checkpointing)
○ Large batches (4M examples)
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A/Compute - Data and Model Parallelism

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019

https://arxiv.org/abs/1811.06965


F0

F1

F2

F3 B3

B2

B1

B0 Update

Update

Update

Update

Time

Only one accelerator is active when the model is distributed across the accelerators

F1 waits for outputs of F0

Stats 285 GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019

https://arxiv.org/abs/1811.06965


F0,0 F0,1 F0,2 F0,3
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B0,3 B0,2 B0,1 B0,0 Update
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Input Batch

MicroBatch
Consistent 
Training

Stats 285 GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019

https://arxiv.org/abs/1811.06965
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More resources to ease handling large networks, painlessly (?)

● Fitting larger networks into memory

● Reducing the Memory Usage

● Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, 
Multi-GPU & Distributed setups

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://cloud.google.com/tpu/docs/troubleshooting
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
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B/Models

    Image-Net Machine Translation

GPipe: Easy Scaling with Pipeline Parallelism - Huang et al., 2019



Some Shiny Hammers

Stats 285
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Aiding the Model

Model enhancements to ease the training:

● Residuals
● Normalizations (layer, batch, spectral)
● Transparent Attention (Bapna et al. 2018)
● Parameter Sharing 

(Press and Wolf 2016, Jean et al. 2018, 
Dehghani et al. 2018)

● Sparsely Gated Mixture of Experts 
(Shazeer et al. 2017)

Aiding the Optimizer

Step rule enhancements to ease the training:

● Sync-training
● Grad-norm tracker (Chen et al. 2018)
● Large batches 

(Goyal et al. 2017, Ott et al. 2018) 
● Learning Rate Schedules (Bengio 2012)
● New step rules 

(Shazeer and Stern 2018, Gupta et al. 2018)
● Logit clipping
● Smart Initializations, Fixup 

(Zhang et al. 2019)
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Putting it all together: M4

Bilingual 
baselines

High Resource  ←                                                           →  Low Resource



Workflow



 

Workflow of AI Researchers working at Scale

Stats 285

Data Selection, 
Collection, 

Filtering

Data

Expressivity, 
Robustness, 
Modularity

Models

Optimization, 
Stabilization, 

Understanding

Trainability

Increased 
Capacity, Tools, 

Infra

Scale
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Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination
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Components of an NMT System

Inference

Training

Evaluation

● Reads a checkpoint of the trained model, runs inference (beam-search)
● Generating output sequences, usually runs on GPU

● Reads the data, computes loss and gradients, applies parameter update.
● The most compute intensive job, runs on TPU

● Reads a checkpoint of the trained model, computes loss on dev set.
● Used for monitoring the progress, usually runs on GPU or CPU
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Under the hood

*This is just a sketch, exact locations are inaccurate.

You
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VM
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Under the hood
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*This is just a sketch, exact locations are inaccurate.

You

Decoder

Evaler



Stats 285

Tensorflow Lingvo: github.com/tensorflow/lingvo



Trainer

● Construct TF training graph for a model. (cs)
○ Place variables
○ Place forward/backward computations
○ Summary

● Repeatedly calls: (TF 1.x)
○ TF session.run(train_op)

https://github.com/tensorflow/lingvo/blob/master/lingvo/trainer.py

Stats 285

https://github.com/tensorflow/lingvo/blob/master/lingvo/trainer.py
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Prototyping Workflow - I

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)

a. Isolated component, not even a layer (method) but a subroutine
b. Validate that the math works
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Prototyping Workflow - II

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)

a. Isolated component, not even a layer (method) but a subroutine
b. Validate that the math works

2. Write a unit test (quick & NOT dirty)
a. Start with some smoke tests
b. Then validity tests



Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py


Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py


Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py


Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

● Create inputs (tf.constant, 
feed_dict).

● Run the graph.

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py


Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

● Create inputs (tf.constant, 
feed_dict).

● Run the graph.
● Verify:

○ Shapes

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py


Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

● Create inputs (tf.constant, 
feed_dict).

● Run the graph.
● Verify:

○ Shapes
○ Output values

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py
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Prototyping Workflow - III

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)

a. Isolated component, not even a layer (method) but a subroutine
b. Validate that the math works

2. Write a unit test (quick & NOT dirty)
a. Start with some smoke tests
b. Then validity tests

3. Actual Runs
a. Test it locally (within a simulated environment), if passes
b. Run it on Data Centers with single machine, if passes
c. Fully fledged run using multiple machines.
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Prototyping

● Minimal code for the research question
● Does only one thing
● Math validated in a colab
● Written smoke tests
● Written detailed functionality tests

do’s

● Start with the final framework
● Add multiple functionalities

○ Too much branching in the code
○ Multiple options in the signature

● Missing tests
○ No tests for varying precision
○ No functionality tests (loss decreasing)

don’ts
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{Spanish, French, German, ...}                {Yoruba, Sindhi, Hawaiian, ...}

Prototyping Massive Models: Width vs Depth (1.3B wide vs 1.3B deep)

Bilingual 
Baselines

Any→En translation performance with model size

Higher quality for 
deep vs. wide at 
same capacity



● Multi-source Neural Machine Translation (Zoph and Knight, 2016)
○ Need to device a merger operation (i.e. sum, avg, gate)
○ Models take too long to train
○ Too many options to try

● Reduce the problem to a chewable size
○ Perhaps down to MNIST level

P 67Stats 285

Prototyping Massive Models: Reducing the Problem
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Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination
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Debugging Large Scale Models

Sources of “bugs” in large scale machine learning:
1. Regular bugs: introduced by ML practitioner 

a. Soln. go grab a coffee
 

2. Device/Infra bugs: hideous bugs
a. Soln. change device, data, data center

3. Theoretical bugs: well... this should’ve never happened in the first place
a. Soln. brush up your ML.
b. Look at the right thing, norm of the gradient vs norm of the weights.
c. Isolate initialization, optimization and malicious data.
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Transparent Attention or Encoder -I
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 70
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Transparent Attention or Encoder -II
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 71

Indicator of a healthy training (Raghu et al. 2017)

● Lower layers converge quickly
● Topmost layers take longer

Expect large grad-norm ratio at the early stages of 
the training, then flatten.
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Transparent Attention or Encoder -III
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 72

Indicator of a healthy training (Raghu et al. 2017)

● Lower layers converge quickly
● Topmost layers take longer

Expect large grad-norm ratio at the early stages of 
the training, then flatten.
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Transparent Attention or Encoder -IV
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 73

Training dynamics:
● Raghu et al. 2017

Caveats:
● Residuals & Skip-connections → Shallowness
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Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination
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Data

● Any Sequence 
● Arbitrary length
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Data

● Any Sequence 
● Arbitrary length

Model

● Architectures
● Neural wiring
● How to parameterize
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Data

● Any Sequence 
● Arbitrary length

Model

● Architectures
● Neural wiring
● How to parameterize

Objective & HParams

● Loss functions
● Optimizers
● All the other governing 

hyper-parameters
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Hyper-parameter Search

First: No one has infinite resources → the more compute we get, the larger we scale.

Some rule-of-thumbs
● All variables are interconnected: if you are changing one, expect the others to be changed
● Always start with the learning rate, then the batch-size
● Hill-climbing is as good as random search

Some tools to automate
● Vizier for Cloud
● Tune for Pytorch

https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization
https://ray.readthedocs.io/en/latest/tune.html


P 80

“Often the single most important hyper-parameter”
Practical recommendations for gradient-based training of deep architectures, 

Bengio 2012

Should always be tuned.

Stats 285

The Learning Rate Schedules
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Automate via Meta-Learning
Learning the learning rate: “Online Learning Rate Adaptation with Hypergradient Descent” Baydin et al. 2017

● Apply gradient descent on the learning rate
(+underlying optimizer)

● Comparison
○ Single pair (wmt’19 en-de): HG ~ Baseline
○ Multi-task (wmt en-{de,fr}): HG  > Baseline
○ BERT: HG ~ Baseline

Learnt learning rate 
schedules (per-layer)
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Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination
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Importance of Configs
For large scale experiments:

● Reproducibility is more important than code 
reuse, cosmetics and other conventions

● Maintaining sufficient checkpoints 
● Having experimental results attached to the 

configs

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py
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Bonus
Platform independent frameworks

TF -> CPU/GPU/TPU/Mobile/Browser

Don’t get lost in the nuances, 
Ask yourself, which research question I’m trying to answer all the time
There is no end in optimization

Working with larger teams
Async approaches

We need something post-silicone
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“Essentially, all models are wrong, but some are useful”
George E. P. Box



Thank You
orhanf@google.com


