From Honey Bee to Mouse Brain
Scaling neural networks beyond 80 billion parameters

Orhan Firat, PhD
Research Scientist
Mountain View - CA
orhanf@google.com
Who am I?

- Research Scientist at Google Research
 - Natural Language Understanding/Machine Translation

- PhD Thesis
 - Connectionist Multi-Sequence Modelling
 Supervisors: Dr. Fatos Yarman Vural - Middle East Technical University
 Dr. Kyunghyun Cho - New York University

- Research Interests
 - Sequence to sequence models: NMT
 - Multilingual Models for NLP
 - Multi-task, Continual learning, Meta-learning
 - Trainability of Neural Networks
 - Used to do some computational neuroscience
100 billion neurons

Neurons in the Human Brain

According to many estimates, the human brain contains around 100 billion neurons (give or take a few billion). Jun 11, 2019

How Many Neurons Are in the Brain? - Verywell Mind
https://www.verywellmind.com/how-many-neurons-are-in-the-brain

Each individual neuron can form thousands of links with other neurons in this way, giving a typical brain well over 100 trillion synapses (up to 1,000 trillion, by some estimates). Functionally related neurons connect to each other to form neural networks (also known as neural nets or assemblies).

Neurons & Synapses - Memory & the Brain - The Human Memory
www.human-memory.net/brain_neurons.html
Number of Synapses

Fruit fly Honey bee Mouse Cat Macaque Human

Stats 285
Number of Synapses

- Fruit fly
- Honey bee
- Mouse
- Cat
- Macaque
- Human

Stats 285

NMT with Attention
Resnet50
[25-50M]

#synapses
[wiki]
Unstoppable Force
Unstoppable Force vs Immovable Object
Scaling Up Neural Networks

Gentlemen, our learner overgeneralizes because the VC-Dimension of our kernel is too high. Get some experts and minimize the structural risk in a new one. Rework our loss function, make the next kernel stable, unbiased and consider using a soft margin.

NEURAL NETWORKS

STACK MORE LAYERS
Number of Synapses

- **Fruit fly**
- **Honey bee**
- **Mouse**
- **Cat**
- **Macaque**
- **Human**

Stats
- Transformer [400M]
- #synapses [wiki]

Number of Synapses:

- Fruit fly: $10^6>$
- Honey bee: 10^9
- Mouse: 10^{12}
- Cat: 10^{13}
- Macaque: 10^{14}
- Human: 10^{15}
Number of Synapses

Fruit fly | Honey bee | Mouse | Cat | Macaque | Human

Stats 285

Transformer [400M]

Facebook ResNeXt101
Open AI GPT2
MSR ZeRO
NVidia Megatron-LM

[1-8B]
Number of Synapses

Exploring Massively Multilingual, Massive Neural Machine Translation
Friday, October 11, 2019

Posted by Ankur Bapna, Software Engineer and Orhan Firat, Research Scientist, Google Research

“... perhaps the way [of translation] is to descend, from each language, down to the common base of human communication — the real but as yet undiscovered universal language — and then re-emerge by whatever particular route is convenient.” — Warren Weaver, 1949
Towards Universal Translation

- **Number of Languages: 103 languages**
 - Single Neural Network Capable of Translating between any two.
 - Massively Multilingual, Multi-task Setup
 - Open domain dataset, crawled from Web **25 billion examples**

- **Number of Neurons: Model Size**
 - Orders of magnitude larger than traditional translation models (Transformer 400M)
 - Massive in terms of number of trainable parameters (**6B - 90B parameters**)
 - Very deep and wide (**1024 layers deep, 16k wide**)

Stats 285
Outline

- **Prototyping** - *Engineering perspective*
- **Debugging** - *ML perspective*
- **Hyper-parameter Search** - *ML perspective*
- **Reproducibility** - *Engineering perspective*
- Bonus: Coordination
Machine Translation

in a nutshell
Google Translate

30 trillion sentences translated per year
Sentence-level quality is improving
What is behind?

The Paradigm:
Sequence to Sequence Learning

The Task:
Neural Machine Translation
Sequence to Sequence Refresher

What do we want \(p(Y|X) \)

How do we do it \(\text{Seq2seq} \)
Neural Machine Translation

INPUT: Je suis étudiant

OUTPUT: I am a student
Transformer: Attention is All You Need - Vaswani et al. 2017

~400 million parameters in total (weights or connections)
Multilingual Neural Machine Translation
Our goal

Develop a universal translation model (i.e., a single model across 1000+ languages)

“Perhaps the way [of translation] is to descend, from each language, down to the common base of human communication -- the real but as yet undiscovered universal language -- and then re-emerge by whatever particular route is convenient.”

Warren Weaver (1949)
1. Massively Multilingual MT

A/ Data

Massively Multilingual Neural Machine Translation, Aharoni et al. NAACL 2019
Massively Multilingual NMT in the Wild: Findings and Challenges, Arivazhagan et al. 2019
Sketch of Power Law Learning Curves [Hestness et al. 2017]
A/Data

- Any Sequence
- Arbitrary length

- Sequence-to-Sequence
 - Machine Translation
 - Sentiment Analysis
 - Speech Recognition
 - Image Captioning

Now at Massive Amounts

- GPT-2 (Radford et al. 2019): Reddit
- M4 (Arivazhagan et al. 2019): Entire Internet

Convert Compute into Data

- AlphaZero, OpenAI Five: Self-Play
- AlphaStar: Multi-agent
A/Data

High Resource
(> 100M examples)

Low Resource
(< 1M examples)

Log Scale

{English, French, German, ...} {Yoruba, Sindhi, Hawaiian, ...}
Massively Multilingual MT - Arivazhagan et al. 2019

Large Gains on Low-Resource Languages with Multilinguality

Translation quality of 103 bilingual baselines

High Resource Languages Low Resource Languages
2. Massive Neural Networks

A/ Compute
B/ Models

Training Deeper Neural Machine Translation Models with Transparent Attention, Bapna et al. EMNLP 2018
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, Shazeer et al. ICLR 2017
AI and Compute - Damodei and Hernandez 2018
A/Compute

- Training on 1024 TPU-v3 chips
- Bfloat16 (Brain Floating Point)
- GPipe: Micro-Batch Pipeline Parallelism (Huang et al., 2019)
 - Rematerialization (gradient checkpointing)
 - Large batches (4M examples)
A/Compute - Tensor Processing Units

Cloud TPU v2
180 teraflops
64 GB High Bandwidth Memory (HBM)

Cloud TPU v3
420 teraflops
128 GB HBM

Cloud TPU v2 Pod (beta)
11.5 petaflops
4 TB HBM
2-D toroidal mesh network

Cloud TPU v3 Pod (beta)
100+ petaflops
32 TB HBM
2-D toroidal mesh network

https://cloud.google.com/tpu/
A/Compute - BFloat16

- fp32 - IEEE single-precision floating-point
- fp16 - IEEE half-precision floating point
- bfloat16 - 16-bit brain floating point

The dynamic range of bfloat16 is greater than that of fp16.

https://cloud.google.com/tpu/docs/bfloat16
A/Compute - Data and Model Parallelism

- Training on 1024 TPU-v3 chips
- Bfloat16 (Brain Floating Point)
- GPipe: Micro-Batch Pipeline Parallelism (Huang et al., 2019)
 - Rematerialization (gradient checkpointing)
 - Large batches (4M examples)

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019
Only one accelerator is active when the model is distributed across the accelerators.

Stats 285

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019
More resources to ease handling large networks, painlessly (?)

- Fitting larger networks into memory
- Reducing the Memory Usage
- Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, Multi-GPU & Distributed setups
B/Models

GPipe: Easy Scaling with Pipeline Parallelism - Huang et al., 2019
Some Shiny Hammers

Stats 285
Aiding the Model

Model enhancements to ease the training:

- Residuals
- Normalizations (layer, batch, spectral)
- Transparent Attention (Bapna et al. 2018)
- Sparsely Gated Mixture of Experts (Shazeer et al. 2017)

Aiding the Optimizer

Step rule enhancements to ease the training:

- Sync-training
- Grad-norm tracker (Chen et al. 2018)
- Large batches (Goyal et al. 2017, Ott et al. 2018)
- Learning Rate Schedules (Bengio 2012)
- New step rules (Shazeer and Stern 2018, Gupta et al. 2018)
- Logit clipping
- Smart Initializations, Fixup (Zhang et al. 2019)
Putting it all together: M4

Bilingual baselines

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Resource</th>
<th>Training Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilingual Baselines - 400M</td>
<td>400M</td>
<td></td>
</tr>
<tr>
<td>TransformerMoE(12 Layers, 512 Experts) - 50B</td>
<td>50B</td>
<td>trained on Any-to-En</td>
</tr>
<tr>
<td>Transformer(128 layers, 16k wide, 32 heads) - 6B</td>
<td>6B</td>
<td>trained on Any-to-Any</td>
</tr>
<tr>
<td>Transformer(12 layers, 8k wide, 16 heads) - 400M</td>
<td>400M</td>
<td>trained on Any-to-Any</td>
</tr>
</tbody>
</table>
Workflow
Workflow of AI Researchers working at Scale

- **Data**: Data Selection, Collection, Filtering
- **Trainability**: Optimization, Stabilization, Understanding
- **Scale**: Increased Capacity, Tools, Infra
- **Models**: Expressivity, Robustness, Modularity
Outline

- Prototyping
- Debugging
- Hyper-parameter Search
- Reproducibility
- Bonus: Coordination
Components of an NMT System

Training
- Reads the data, computes loss and gradients, applies parameter update.
- The most compute intensive job, runs on TPU

Inference
- Reads a checkpoint of the trained model, runs inference (beam-search)
- Generating output sequences, usually runs on GPU

Evaluation
- Reads a checkpoint of the trained model, computes loss on dev set.
- Used for monitoring the progress, usually runs on GPU or CPU
Under the hood

*This is just a sketch, exact locations are inaccurate.
Under the hood

*This is just a sketch, exact locations are inaccurate.
Under the hood

You ➡️ VM ➡️ Trainer ➡️ Decoder ➡️ Evaluator

This is just a sketch, exact locations are inaccurate.
Under the hood

*This is just a sketch, exact locations are inaccurate.
Under the hood

This is just a sketch, exact locations are inaccurate.
Under the hood

This is just a sketch, exact locations are inaccurate.
Tensorflow Lingvo: github.com/tensorflow/lingvo
Trainer

- Construct TF training graph for a model. (cs)
 - Place variables
 - Place forward/backward computations
 - Summary

- Repeatedly calls: (TF 1.x)
 - TF session.run(train_op)

```python
class TrainerTpu(base_runner.BaseRunner):
  """Trainer on TPU."""

  def __init__(self, *args, **kwargs):
    super(TrainerTpu, self).__init__(*args, **kwargs)

    # Multiple TPU trainer tasks not tested/implemented.
    assert self._cluster.num_replicas == 1
    data_parallelism = self._cluster.num_splits_per_client
    assert data_parallelism
    num_devices_per_split = self._cluster.num_devices_per_split
    tf.logging.info('data_parallelism: %d, num_devices_per_split: %d',
                    data_parallelism, num_devices_per_split)

    self._steps_per_loop = min(self.params.train.tpu_steps_per_loop,
                                self.params.train.max_steps)

    self._cluster_def = self._cluster.worker_cluster_def
    self._initialized = threading.Event()

    tf.logging.info(
        'Creating TrainerTpu using data_parallelism %s ' +
        'and %s steps_per_loop', data_parallelism, self._steps_per_loop)

https://github.com/tensorflow/lingvo/blob/master/lingvo/trainer.py
```
Prototyping Workflow – I

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)
 a. Isolated component, not even a layer (method) but a subroutine
 b. Validate that the math works
Prototyping Workflow - II

0. Read bunch of papers, ask a research question, hypothesize a solution

1. Play first in a colab (quick & dirty)
 a. Isolated component, not even a layer (method) but a subroutine
 b. Validate that the math works

2. Write a unit test (quick & NOT dirty)
 a. Start with some smoke tests
 b. Then validity tests
Writing Tests

Inherit from test_utils.TestCase.

In a test method:
 ● Construct the layer graph.

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py
Writing Tests

Inherit from test_utils.TestCase.

In a test method:

- Construct the layer graph.
- Verify:
 - The graph is constructible

```python
def testEncoderConstruction(self):
    p = self._EncoderParams()
    _ = encoder.MTEncoderV1(p)
```

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py
Writing Tests

Inherit from test_utils.TestCase.

In a test method:

- Construct the layer graph.
- Verify:
 - The graph is constructible
 - # variables

```python
def testEncoderVars(self):
    p = self._EncoderParams()
    mt_enc = encoder.TransformerEncoder(p)
    enc_vars = mt_enc.vars
    flatten_vars = enc_vars.Flatten()
    self.assertEqual(len(flatten_vars), 91)
```
Writing Tests

Inherit from test_utils.TestCase.

In a test method:

- Construct the layer graph.
- Verify:
 - The graph is constructible
 - # variables
- Create inputs (tf.constant, feed_dict).
- Run the graph.

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py
Writing Tests

Inherit from test_utils.TestCase.

In a test method:

● Construct the layer graph.
● Verify:
 ○ The graph is constructible
 ○ # variables
● Create inputs (tf.constant, feed_dict).
● Run the graph.
● Verify:
 ○ Shapes

```python
a, m = frnn.FPropDefaultTheta(src_encs, src_paddings, inputs, paddings)
frnn_out = tf.concat([a, m], 2)

# Initialize all the variables, and then run one step.
tf.global_variables_initializer().run()
ys, = sess.run([frnn_out])
self.assertEqual(ys.shape, (7, 6, 8))
```

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py
Writing Tests

Inherit from test_utils.TestCase.

In a test method:

- Construct the layer graph.
- Verify:
 - The graph is constructible
 - # variables
- Create inputs (tf.constant, feed_dict).
- Run the graph.
- Verify:
 - Shapes
 - Output values

```python
with self.session(use_gpu=True) as sess:
    tf.global_variables_initializer().run()
    actual_decode = sess.run(decode)

expected_topk_ids = [[2, 0, 0, 0, 0], [11, 2, 0, 0, 0], [2, 0, 0, 0, 0],
                    [6, 2, 0, 0, 0]]

expected_topk_lens = [1, 2, 1, 2]
expected_topk_scores = [[-3.78467, -5.771077], [-3.334115, -5.597376]]

self.assertAllEqual(expected_topk_ids, actual_decode.topk_ids)
self.assertAllEqual(expected_topk_lens, actual_decode.topk_lens)
self.assertAllClose(expected_topk_scores, actual_decode.topk_scores)
```

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py
Prototyping Workflow - III

0. Read bunch of papers, ask a research question, hypothesize a solution

1. Play first in a colab (quick & dirty)
 a. Isolated component, not even a layer (method) but a subroutine
 b. Validate that the math works

2. Write a unit test (quick & NOT dirty)
 a. Start with some smoke tests
 b. Then validity tests

3. Actual Runs
 a. Test it locally (within a simulated environment), if passes
 b. Run it on Data Centers with single machine, if passes
 c. Fully fledged run using multiple machines.
Prototyping

do’s

● Minimal code for the research question
● Does only one thing
● Math validated in a colab
● Written smoke tests
● Written detailed functionality tests

don’ts

● Start with the final framework
● Add multiple functionalities
 ○ Too much branching in the code
 ○ Multiple options in the signature
● Missing tests
 ○ No tests for varying precision
 ○ No functionality tests (loss decreasing)
Prototyping Massive Models: Width vs Depth (1.3B wide vs 1.3B deep)

Any→En translation performance with model size

Higher quality for deep vs. wide at same capacity

Bilingual Baselines

{Spanish, French, German, ...} {Yoruba, Sindhi, Hawaiian, ...}
Prototyping Massive Models: Reducing the Problem

- Multi-source Neural Machine Translation (Zoph and Knight, 2016)
 - Need to devise a merger operation (i.e. sum, avg, gate)
 - Models take too long to train
 - Too many options to try

- Reduce the problem to a chewable size
 - Perhaps down to MNIST level

Train the model for $p(y|x_1, x_2)$
Outline

- Prototyping
- **Debugging**
- Hyper-parameter Search
- Reproducibility
- Bonus: Coordination
Debugging Large Scale Models

Sources of “bugs” in large scale machine learning:

1. **Regular bugs**: introduced by ML practitioner
 a. Soln. go grab a coffee

2. **Device/Infra bugs**: hideous bugs
 a. Soln. change device, data, data center

3. **Theoretical bugs**: well... this should’ve never happened in the first place
 a. Soln. brush up your ML.
 b. Look at the right thing, norm of the gradient vs norm of the weights.
 c. Isolate initialization, optimization and malicious data.
Transparent Attention or Encoder - I
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)
Transparent Attention or Encoder -II
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

Indicator of a healthy training (Raghu et al. 2017)

- Lower layers converge quickly
- Topmost layers take longer

Expect large grad-norm ratio at the early stages of the training, then flatten.

$$r_t = \left(\frac{\| \nabla_{h_1} L^{(t)} \|}{\| \nabla_{h_N} L^{(t)} \|} \right)$$

Figure 1: Grad-norm ratio (r_t) vs training step (t) comparison for a 6 layer (blue) and 20 layer (red) Transformer trained on WMT 14 En→De.
Figure 3: Grad-norm ratio (r_t) vs training step for 20 layer Transformer with transparent attention.

$$r_t = \left(\frac{|| \nabla_{h_1} L^{(t)} ||}{|| \nabla_{h_N} L^{(t)} ||} \right)$$

Indicator of a healthy training (Raghu et al. 2017)

- Lower layers converge quickly
- Topmost layers take longer

Expect large grad-norm ratio at the early stages of the training, then flatten.
Figure 4: Plot illustrating the variations in the learned attention weights $s_{i,6}$ for the 20 layer Transformer encoder over the training process.

<table>
<thead>
<tr>
<th>Transformer (Base)</th>
<th>(Big)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder layers</td>
<td>6</td>
</tr>
<tr>
<td>Num. Parameters</td>
<td>94M</td>
</tr>
<tr>
<td>Baseline</td>
<td>27.26</td>
</tr>
<tr>
<td>Baseline - residuals</td>
<td>*</td>
</tr>
<tr>
<td>Transparent</td>
<td>27.52</td>
</tr>
</tbody>
</table>

Training dynamics:
- Raghu et al. 2017

Caveats:
- Residuals & Skip-connections → Shallowness
Outline

- Prototyping
- Debugging
- Hyper-parameter Search
- Reproducibility
- Bonus: Coordination
quality = f(X, \theta, \mu)
quality = f(X, θ, μ)

Data
- Any Sequence
- Arbitrary length
quality = f(X, \theta, \mu)

Data
- Any Sequence
- Arbitrary length

Model
- Architectures
- Neural wiring
- How to parameterize
quality = f(X, θ, µ)

Data
- Any Sequence
- Arbitrary length

Model
- Architectures
- Neural wiring
- How to parameterize

Objective & HParams
- Loss functions
- Optimizers
- All the other governing hyper-parameters
Hyper-parameter Search

First: No one has infinite resources → the more compute we get, the larger we scale.

Some rule-of-thumbs
- All variables are interconnected: if you are changing one, expect the others to be changed
- Always start with the learning rate, then the batch-size
- Hill-climbing is as good as random search

Some tools to automate
- Vizier for Cloud
- Tune for Pytorch
The Learning Rate Schedules

“Often the single most important hyper-parameter”
Practical recommendations for gradient-based training of deep architectures,
Bengio 2012

Should always be tuned.
Automate via Meta-Learning

Learning the learning rate: “Online Learning Rate Adaptation with Hypergradient Descent” Baydin et al. 2017

- Apply gradient descent on the learning rate (+underlying optimizer)
- Comparison
 - Single pair (wmt’19 en-de): HG ~ Baseline
 - Multi-task (wmt en-{de,fr}): HG > Baseline
 - BERT: HG ~ Baseline

Learnt learning rate schedules (per-layer)
Outline

- Prototyping
- Debugging
- Hyper-parameter Search
- Reproducibility
- Bonus: Coordination
Importance of Configs

For large scale experiments:

- Reproducibility is more important than code reuse, cosmetics and other conventions
- Maintaining sufficient checkpoints
- Having experimental results attached to the configs

```python
# model_registry.RegisterSingleTaskModel
class WmtEnDeTransformerBase(base_model_params.SingleTaskModelParams):
    """Params for WMT ’14 En->De."
"
    DATADIR = '/usr/local/google/wmt14/wgm/'
    VOCAB_SIZE = 32000

    @classmethod
def Train(cls):
        p = input_generator.NmtInput.Params()
        p.file_pattern = 'tfrecord:’+os.path.join(cls.DATADIR, 'train.tfrecords-‘)+
        p.tokenizer.token_vocab_filepath = os.path.join(cls.DATADIR, 'wgm-ende.voc')
        p.bucket_batch_limit = [(128, 102, 85, 73, 64, 51, 42)]
        return p

    @classmethod
def Dev(cls):
        p = input_generator.NmtInput.Params()
        p.file_pattern = 'tfrecord:’+os.path.join(cls.DATADIR, 'dev.tfrecords-‘)+
        p.tokenizer.token_vocab_filepath = os.path.join(cls.DATADIR, 'wgm-ende.voc')
        return p

    @classmethod
def Test(cls):
        p = input_generator.NmtInput.Params()
        p.file_pattern = 'tfrecord:’+os.path.join(cls.DATADIR, 'test.tfrecords-‘)+
        p.tokenizer.token_vocab_filepath = os.path.join(cls.DATADIR, 'wgm-ende.voc')
        return p

    @classmethod
def Task(cls):
        p = base_config.SetupTransformerParams(
            model.transformer_model.Params(),
            name=’wmt14_en_de_transformer_base’,
            vocab_size=cls.VOCAB_SIZE,
            model_dim=512,
            hidden_dim=2048,
            num_heads=8,
            num_layers=6,
            residual_dropout_prob=0.1,
            input_dropout_prob=0.1,
            learning_rate=3.0,
            warmup_steps=10000)
        p.eval.samples_per_summary = 7500
        return p
```

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py
Bonus

Platform independent frameworks

TF -> CPU/GPU/TPU/Mobile/Browser

Don’t get lost in the nuances,
Ask yourself, which research question I’m trying to answer all the time
There is no end in optimization

Working with larger teams
 Async approaches

We need something post-silicone
“Essentially, all models are wrong, but some are useful”

George E. P. Box
Thank You

orhanf@google.com