
From Honey Bee to Mouse Brain
Scaling neural networks beyond 80 billion parameters

Oct 28, 2019 Stats 285 - Stanford

Orhan Firat, PhD
Research Scientist

Mountain View - CA
orhanf@google.com

Stats 285

Who am I?
● Research Scientist at Google Research

○ Natural Language Understanding/Machine Translation

● PhD Thesis
○ Connectionist Multi-Sequence Modelling

Supervisors: Dr. Fatos Yarman Vural - Middle East Technical University
 Dr. Kyunghyun Cho - New York University

● Research Interests
○ Sequence to sequence models: NMT
○ Multilingual Models for NLP
○ Multi-task, Continual learning, Meta-learning
○ Trainability of Neural Networks
○ Used to do some computational neuroscience

Stats 285

106> 109 1012 1013 1014 1015

Fruit fly Honey bee Mouse Cat Macaque Human

Number of Synapses

Stats 285

#synapses
[wiki]

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

106> 109 1012 1013 1014 1015

Fruit fly Honey bee Mouse Cat Macaque Human

Number of Synapses

Stats 285

#synapses
[wiki]

NMT with Attention
Resnet50
[25-50M]

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

Stats 285 P 6

Unstoppable Force

Stats 285 P 7

Unstoppable Force vs Immovable Object

Stats 285

Scaling Up Neural Networks

Machine Learning Memes for Convolutional Teens

https://www.facebook.com/profile.php?id=287764591678048&ref=br_rs

106> 109 1012 1013 1014 1015

Fruit fly Honey bee Mouse Cat Macaque Human

Number of Synapses

Stats 285

Transformer
[400M]

#synapses
[wiki]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

106> 109 1012 1013 1014 1015

Fruit fly Honey bee Mouse Cat Macaque Human

Number of Synapses

Stats 285

Transformer
[400M]

#synapses
[wiki]

Facebook ResNeXt101
Open AI GPT2

MSR ZeRO
NVidia Megatron-LM

[1-8B]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://openai.com/blog/better-language-models/
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/abs/1909.08053

106> 109 1012 1013 1014 1015

Fruit fly Honey bee Mouse Cat Macaque Human

Number of Synapses

Stats 285

Transformer
[400M]

#synapses
[wiki]

Facebook ResNeXt101
Open AI GPT2

MSR ZeRO
NVidia Megatron-LM

[1-8B]

M4:
Massively Multilingual Massive

Machine Translation
[80B]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://openai.com/blog/better-language-models/
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/abs/1909.08053
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html

106> 109 1012 1013 1014 1015

Fruit fly Honey bee Mouse Cat Macaque Human

Number of Synapses

Stats 285

Transformer
[400M]

#synapses
[wiki]

Facebook ResNeXt101
Open AI GPT2

MS ZeRO
NVidia Megatron-LM

[1-10B]

M4:
Massively Multilingual Massive

Machine Translation
[80B]

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://openai.com/blog/better-language-models/
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/abs/1909.08053
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html

Stats 285

Towards Universal Translation

● Number of Languages: 103 languages
→ Single Neural Network Capable of Translating between any two.
→ Massively Multilingual, Multi-task Setup
→ Open domain dataset, crawled from Web 25 billion examples

● Number of Neurons: Model Size
→ Orders of magnitude larger than traditional translation models (Transformer 400M)
→ Massive in terms of number of trainable parameters (6B - 90B parameters)
→ Very deep and wide (1024 layers deep, 16k wide)

Stats 285

Outline

● Prototyping - Engineering perspective
● Debugging - ML perspective
● Hyper-parameter Search - ML perspective
● Reproducibility - Engineering perspective
● Bonus: Coordination

Stats 285

Machine
Translation

in a nutshell

© Google - Confidential and Proprietary

30 trillion
sentences translated per year

Google Translate

Sentence-level quality is improving

Stats 285

What is behind?

The Paradigm:

The Task:
Neural Machine Translation

Sequence to Sequence Learning

Figure Credit: Jan Chorowski

Sequence to Sequence Refresher

Neural Machine Translation

Stats 285

Transformer: Attention is All You Need - Vaswani et al. 2017

~400 million parameters
in total

(weights or connections)

Stats 285

Multilingual Neural Machine Translation

Stats 285

Our goal

Develop a universal translation model
(i.e,. a single model across 1000+ languages)

“Perhaps the way [of translation] is to descend, from each
language, down to the common base of human communication --
the real but as yet undiscovered universal language -- and then
re-emerge by whatever particular route is convenient.”

Warren Weaver (1949)

1. Massively Multilingual MT
 A/ Data

Stats 285

Massively Multilingual Neural Machine Translation, Aharoni et al. NAACL 2019
Massively Multilingual NMT in the Wild: Findings and Challenges, Arivazhagan et al. 2019

https://arxiv.org/abs/1903.00089
https://arxiv.org/abs/1907.05019

Stats 285

A/Data

Sketch of Power Law Learning Curves [Hestness et al. 2017]

Stats 285

● Any Sequence
● Arbitrary length

● Sequence-to-Sequence
○ Machine Translation
○ Sentiment Analysis
○ Speech Recognition
○ Image Captioning

Now at Massive Amounts

● BERT (Devlin et al. 2018): Wikipedia
● GPT-2 (Radford et al. 2019) : Reddit
● M4 (Arivazhagan et al. 2019): Entire Internet

Convert Compute into Data

● AlphaZero, OpenAI Five: Self-Play
● AlphaStar: Multi-agent

A/Data

Stats 285

Log Scale

High Resource
(> 100M examples)

Low Resource
(< 1M examples)

{English, French, German, ...} {Yoruba, Sindhi, Hawaiian, ...}

A/Data

Massively Multilingual MT - Arivazhagan et al. 2019

Stats 285

Large Gains on Low-Resource Languages with Multilinguality

2. Massive Neural Networks
A/ Compute
B/ Models

Training Deeper Neural Machine Translation Models with Transparent Attention, Bapna et al. EMNLP 2018
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, Shazeer et al. ICLR 2017

Stats 285

https://aclweb.org/anthology/D18-1338/
https://arxiv.org/abs/1811.06965
https://arxiv.org/pdf/1701.06538.pdf

Stats 285

A/Compute

AI and Compute - Damodei and Hernandez 2018

● Training on 1024 TPU-v3 chips
● Bfloat16 (Brain Floating Point)
● GPipe: Micro-Batch Pipeline Parallelism

(Huang et al., 2019)
○ Rematerialization

(gradient checkpointing)
○ Large batches (4M examples)

Stats 285

A/Compute

Stats 285

A/Compute - Tensor Processing Units

https://cloud.google.com/tpu/

https://cloud.google.com/tpu/

Stats 285

A/Compute - BFloat16

https://cloud.google.com/tpu/docs/bfloat16

https://cloud.google.com/tpu/docs/bfloat16

● Training on 1024 TPU-v3 chips
● Bfloat16 (Brain Floating Point)
● GPipe: Micro-Batch Pipeline Parallelism

(Huang et al., 2019)
○ Rematerialization

(gradient checkpointing)
○ Large batches (4M examples)

Stats 285

A/Compute - Data and Model Parallelism

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019

https://arxiv.org/abs/1811.06965

F0

F1

F2

F3 B3

B2

B1

B0 Update

Update

Update

Update

Time

Only one accelerator is active when the model is distributed across the accelerators

F1 waits for outputs of F0

Stats 285 GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019

https://arxiv.org/abs/1811.06965

F0,0 F0,1 F0,2 F0,3

F1,0 F1,1 F1,2 F1,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3 B3,3 B3,2 B3,1 B3,0

B2,3 B2,2 B2,1 B2,0

B1,3 B1,2 B1,1 B1,0

B0,3 B0,2 B0,1 B0,0 Update

Update

Update

Update

Bubble

Input Batch

MicroBatch
Consistent
Training

Stats 285 GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, Huang et al. NeurIPS 2019

https://arxiv.org/abs/1811.06965

Stats 285

More resources to ease handling large networks, painlessly (?)

● Fitting larger networks into memory

● Reducing the Memory Usage

● Training Neural Nets on Larger Batches: Practical Tips for 1-GPU,
Multi-GPU & Distributed setups

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://cloud.google.com/tpu/docs/troubleshooting
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255

Stats 285

B/Models

 Image-Net Machine Translation

GPipe: Easy Scaling with Pipeline Parallelism - Huang et al., 2019

Some Shiny Hammers

Stats 285

Stats 285 P 40

Aiding the Model

Model enhancements to ease the training:

● Residuals
● Normalizations (layer, batch, spectral)
● Transparent Attention (Bapna et al. 2018)
● Parameter Sharing

(Press and Wolf 2016, Jean et al. 2018,
Dehghani et al. 2018)

● Sparsely Gated Mixture of Experts
(Shazeer et al. 2017)

Aiding the Optimizer

Step rule enhancements to ease the training:

● Sync-training
● Grad-norm tracker (Chen et al. 2018)
● Large batches

(Goyal et al. 2017, Ott et al. 2018)
● Learning Rate Schedules (Bengio 2012)
● New step rules

(Shazeer and Stern 2018, Gupta et al. 2018)
● Logit clipping
● Smart Initializations, Fixup

(Zhang et al. 2019)

Stats 285

Putting it all together: M4

Bilingual
baselines

High Resource ← → Low Resource

Workflow

Workflow of AI Researchers working at Scale

Stats 285

Data Selection,
Collection,

Filtering

Data

Expressivity,
Robustness,
Modularity

Models

Optimization,
Stabilization,

Understanding

Trainability

Increased
Capacity, Tools,

Infra

Scale

Stats 285

Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination

Stats 285

Components of an NMT System

Inference

Training

Evaluation

● Reads a checkpoint of the trained model, runs inference (beam-search)
● Generating output sequences, usually runs on GPU

● Reads the data, computes loss and gradients, applies parameter update.
● The most compute intensive job, runs on TPU

● Reads a checkpoint of the trained model, computes loss on dev set.
● Used for monitoring the progress, usually runs on GPU or CPU

Stats 285

Under the hood

*This is just a sketch, exact locations are inaccurate.

You

Stats 285

Under the hood

VM

*This is just a sketch, exact locations are inaccurate.

You

Stats 285

Under the hood

Trainer

VM

*This is just a sketch, exact locations are inaccurate.

You

Stats 285

Under the hood

Trainer

VM

*This is just a sketch, exact locations are inaccurate.

You

Decoder

Evaler

Stats 285

Under the hood

Data

Trainer

VM

*This is just a sketch, exact locations are inaccurate.

You

Decoder

Evaler

Stats 285

Under the hood

Data

Trainer

VM

*This is just a sketch, exact locations are inaccurate.

You

Decoder

Evaler

Stats 285

Under the hood

Data

Trainer

VM

*This is just a sketch, exact locations are inaccurate.

You

Decoder

Evaler

Stats 285

Under the hood

Data

Trainer

VM

*This is just a sketch, exact locations are inaccurate.

You

Decoder

Evaler

Stats 285

Tensorflow Lingvo: github.com/tensorflow/lingvo

Trainer

● Construct TF training graph for a model. (cs)
○ Place variables
○ Place forward/backward computations
○ Summary

● Repeatedly calls: (TF 1.x)
○ TF session.run(train_op)

https://github.com/tensorflow/lingvo/blob/master/lingvo/trainer.py

Stats 285

https://github.com/tensorflow/lingvo/blob/master/lingvo/trainer.py

Stats 285

Prototyping Workflow - I

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)

a. Isolated component, not even a layer (method) but a subroutine
b. Validate that the math works

Stats 285

Prototyping Workflow - II

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)

a. Isolated component, not even a layer (method) but a subroutine
b. Validate that the math works

2. Write a unit test (quick & NOT dirty)
a. Start with some smoke tests
b. Then validity tests

Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

● Create inputs (tf.constant,
feed_dict).

● Run the graph.

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

● Create inputs (tf.constant,
feed_dict).

● Run the graph.
● Verify:

○ Shapes

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

Writing Tests

Inherit from test_utils.TestCase.

In a test method:
● Construct the layer graph.
● Verify:

○ The graph is constructible
○ # variables

● Create inputs (tf.constant,
feed_dict).

● Run the graph.
● Verify:

○ Shapes
○ Output values

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/encoder_test.py

Stats 285

Prototyping Workflow - III

0. Read bunch of papers, ask a research question, hypothesize a solution
1. Play first in a colab (quick & dirty)

a. Isolated component, not even a layer (method) but a subroutine
b. Validate that the math works

2. Write a unit test (quick & NOT dirty)
a. Start with some smoke tests
b. Then validity tests

3. Actual Runs
a. Test it locally (within a simulated environment), if passes
b. Run it on Data Centers with single machine, if passes
c. Fully fledged run using multiple machines.

Stats 285

Prototyping

● Minimal code for the research question
● Does only one thing
● Math validated in a colab
● Written smoke tests
● Written detailed functionality tests

do’s

● Start with the final framework
● Add multiple functionalities

○ Too much branching in the code
○ Multiple options in the signature

● Missing tests
○ No tests for varying precision
○ No functionality tests (loss decreasing)

don’ts

P 66Stats 285

{Spanish, French, German, ...} {Yoruba, Sindhi, Hawaiian, ...}

Prototyping Massive Models: Width vs Depth (1.3B wide vs 1.3B deep)

Bilingual
Baselines

Any→En translation performance with model size

Higher quality for
deep vs. wide at
same capacity

● Multi-source Neural Machine Translation (Zoph and Knight, 2016)
○ Need to device a merger operation (i.e. sum, avg, gate)
○ Models take too long to train
○ Too many options to try

● Reduce the problem to a chewable size
○ Perhaps down to MNIST level

P 67Stats 285

Prototyping Massive Models: Reducing the Problem

Stats 285

Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination

Stats 285

Debugging Large Scale Models

Sources of “bugs” in large scale machine learning:
1. Regular bugs: introduced by ML practitioner

a. Soln. go grab a coffee

2. Device/Infra bugs: hideous bugs
a. Soln. change device, data, data center

3. Theoretical bugs: well... this should’ve never happened in the first place
a. Soln. brush up your ML.
b. Look at the right thing, norm of the gradient vs norm of the weights.
c. Isolate initialization, optimization and malicious data.

Stats 285

Transparent Attention or Encoder -I
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 70

Stats 285

Transparent Attention or Encoder -II
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 71

Indicator of a healthy training (Raghu et al. 2017)

● Lower layers converge quickly
● Topmost layers take longer

Expect large grad-norm ratio at the early stages of
the training, then flatten.

Stats 285

Transparent Attention or Encoder -III
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 72

Indicator of a healthy training (Raghu et al. 2017)

● Lower layers converge quickly
● Topmost layers take longer

Expect large grad-norm ratio at the early stages of
the training, then flatten.

Stats 285

Transparent Attention or Encoder -IV
(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

P 73

Training dynamics:
● Raghu et al. 2017

Caveats:
● Residuals & Skip-connections → Shallowness

Stats 285

Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination

Stats 285 P 75

Stats 285 P 76

Data

● Any Sequence
● Arbitrary length

Stats 285 P 77

Data

● Any Sequence
● Arbitrary length

Model

● Architectures
● Neural wiring
● How to parameterize

Stats 285 P 78

Data

● Any Sequence
● Arbitrary length

Model

● Architectures
● Neural wiring
● How to parameterize

Objective & HParams

● Loss functions
● Optimizers
● All the other governing

hyper-parameters

Stats 285

Hyper-parameter Search

First: No one has infinite resources → the more compute we get, the larger we scale.

Some rule-of-thumbs
● All variables are interconnected: if you are changing one, expect the others to be changed
● Always start with the learning rate, then the batch-size
● Hill-climbing is as good as random search

Some tools to automate
● Vizier for Cloud
● Tune for Pytorch

https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization
https://ray.readthedocs.io/en/latest/tune.html

P 80

“Often the single most important hyper-parameter”
Practical recommendations for gradient-based training of deep architectures,

Bengio 2012

Should always be tuned.

Stats 285

The Learning Rate Schedules

Stats 285

Automate via Meta-Learning
Learning the learning rate: “Online Learning Rate Adaptation with Hypergradient Descent” Baydin et al. 2017

● Apply gradient descent on the learning rate
(+underlying optimizer)

● Comparison
○ Single pair (wmt’19 en-de): HG ~ Baseline
○ Multi-task (wmt en-{de,fr}): HG > Baseline
○ BERT: HG ~ Baseline

Learnt learning rate
schedules (per-layer)

Stats 285

Outline

● Prototyping
● Debugging
● Hyper-parameter Search
● Reproducibility
● Bonus: Coordination

Stats 285

Importance of Configs
For large scale experiments:

● Reproducibility is more important than code
reuse, cosmetics and other conventions

● Maintaining sufficient checkpoints
● Having experimental results attached to the

configs

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py

https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py

Stats 285

Bonus
Platform independent frameworks

TF -> CPU/GPU/TPU/Mobile/Browser

Don’t get lost in the nuances,
Ask yourself, which research question I’m trying to answer all the time
There is no end in optimization

Working with larger teams
Async approaches

We need something post-silicone

Stats 285 P 85

“Essentially, all models are wrong, but some are useful”
George E. P. Box

Thank You
orhanf@google.com

