
Massive Computational
Experiments, Painlessly

STATS 285
Stanford University

My research
Study of deep net:
● Features
● Weights
● Backpropagated errors
● Gradients
● Fisher information matrix
● Hessian
● …

Eternal cycle

train deepnets analyze deepnets

visualize results
paper

Training deepnets: experiment specification
● Dataset:

○ MNIST, FashionMNIST, CIFAR10, CIFAR100, ImageNet

● Network:
○ MLP, LeNet, VGG, ResNet

● Control parameters:
○ Dataset: sample size, number of classes
○ Network: width, depth
○ Optimization: algorithm, learning rate, learning rate scheduler, batch size

● Observables:
○ Top1 error, loss

Training deepnets: experiment results

Dataset Network Optimization

Control parameters Train observables

Analyzing deepnets: analysis specification
● Dataset:

○ MNIST, FashionMNIST, CIFAR10, CIFAR100, ImageNet

● Network:
○ MLP, LeNet, VGG, ResNet

● Control parameters:
○ Dataset: sample size, number of classes
○ Network: width, depth
○ Optimization: find control parameters leading to best top-1 error

● Observables:
○ Spectra of deepnets features, backpropagated errors, gradients, Fisher information matrix,

Hessian, …

Analyzing deepnets: analysis results

Dataset Net Optimization

Control parameters Train observables Analysis observables

Dataset_kwargs
Im_size
Padded_im_size
Num_classes
Input_ch
Threads
Limited_dataset
Examples_per_class
Epc_seed
Train_seed
Size_list
Pretrained
Retrain_last
Multilabel
Corrupt_prob
Reset_classifier
Resnet_type
Test_trans_only
Garbage_collect
Epochs

Phase
Dataset_path
Test_trans_only
Drop_last
Sampler
Corrupt_prob
Load_epoch
Train_batch_size
Test_batch_size
Training_results_path
Anals_results_path
Layers_func
Seed
Absorb_bn
Filter_bn
Milestones_perc
Gamma
Train_batch_size
Training_results_path
Save_middle

Double
Loader_constructor
Sampler
Pin_memory
normalized_Fashion
Momentum
Weight_decay
GAN
Forward_class
Classification
Forward_func
Critnet
Optim
Optim_kwargs
Epochs
Lr
Net_width
Num_layers

Repeat_idx
N_vec
Mult_num_classes
Trace_est_iters
Perplexity_list
Double
Rand_model
Bidiag
Cpu_eigvec
G_decomp_cpu
Train_dataset
Test_dataset
Loader_type
Pytorch_dataset
Dataset_path
Concat_loader
Switch_relu_pool
Scattering
Save_init_epoch
One_batch

K_Normalization
Damping
Ignore_bias
save_K
Hessian_layer
All_params
Hessian_type
Init_poly_degpoly_deg
Poly_points
Spectrum_margin
Kappa
Log_hessian
Start_eig_range
Stop_eig_range
Power_method_iters
Test_batch_size
Device
Seed
Train_dump_file
Epoch_list

In practice slightly more complicated...

Alpha

experiment.py analysis.py

specification of
experiment and analysis

implementation of
experiment and analysis

datasets networks

datasetsmodel_paths.py

locations of
trained models

experiment.py -- experiment specification

Alpha

experiment.py analysis.py

specification of
experiment and analysis

implementation of
experiment and analysis

datasets networks

datasetsmodel_paths.py

locations of
trained models

Experiment class -- experiment implementation

Save all experiment specification in self

Experiment class -- experiment implementation
Use fields from experiment

specification

Experiment class -- experiment implementation

Experiment class -- experiment implementation

experiment specification observables

Concatenate experiment specification to observables and as row to csv

Alpha

experiment.py analysis.py

specification of
experiment and analysis

implementation of
experiment and analysis

datasets networks

datasetsmodel_paths.py

locations of
trained models

model_paths.py
dictionary of trained model paths

* Each of this paths corresponds to all the models
trained for a certain dataset and a certain network

Alpha

experiment.py analysis.py

specification of
experiment and analysis

implementation of
experiment and analysis

datasets networks

datasetsmodel_paths.py

locations of
trained models

analysis.py -- analysis specification

Sherlock
● Cluster at Stanford
● Has many computational resources

○ CPUs
○ GPUs

● Useful for storing data
○ Laptop very limited in terms of memory
○ Data can get deleted if not touched for too long
○ Cloud costs money

● Interactive IPython notebook (Sherlock on demand)

ClusterJob: goal
dataset_idx=0, net_idx=0, size_idx=0, epoch_idx=0

dataset_idx=0, net_idx=0, size_idx=0, epoch_idx=1

…

dataset_idx=2, net_idx=1, size_idx=3, epoch_idx=0

…

dataset_idx=2, net_idx=1, size_idx=9, epoch_idx=1

Easily parallelizable!

ClusterJob: jobs submission

ClusterJob: jobs submission

file to run
cluster to
run it on

partitions in
sherlock I use

1 GPU
per job

32GB memory
per job

nodes in sherlock that
don’t work for me

dependencies
except

analysis.py

description
of jobs

parallelize

ClusterJob: check state of jobs

ClusterJob id

Sherlock ID

ClusterJob: check progress of jobs

ClusterJob: find location of jobs on cluster

description of job

path on cluster to job

job id

ClusterJob: connecting to cluster

ClusterJob: changing directory to folder of jobs

path on cluster to job

ClusterJob: folder of jobs

one folder per each job

dependencies

ClusterJob: folder of a single job

results folder created after
experiment was run

ClusterJob: results folder

deepnet models trained

training results csv

intermediate state -- can resume if
interrupted in middle of training

ClusterJob: reducing all results into a single csv file

job id
path to csv file within

each job directory

ClusterJob: downloading results to local machine

Good way of keeping track of running jobs:
● reduce
● get
● plot locally

Elasticluster
● During quarter Sherlock can get busy
● Two options:

○ Work nights / weekends / holidays
○ Cloud computing

● Elasticluster allows to easily set up clusters on GCP/AWS/Azure/…
● Works seamlessly with ClusterJob

Tableau

test_results.csv

Tableau in a nutshell

Tableau in a nutshell

columns
in csv file

plot one of the
columns vs another,

structure of CSV
very important!

filter data

Tableau: XYZ grid
X and Y Z

Tableau: simple functions of existing variables

● Easy to analyze data -- drag and drop
● Easy to reproduce plots:

○ Delete results locally and keep only tableau sheet
○ Keep results on Sherlock2 / GCP
○ When need to recreate plot, download from cluster and open tableau sheet

● Easy to work with very large csv files using integration of tableau with the
cloud

● Easy to calculate simple functions of existing columns

Tableau

● Alpha: facilitates massive experiments by organizing code correctly
● ClusterJob: allows easy job parallelization
● Sherlock2: provides computational resources, storage, IPython notebooks
● Elasticluster: creates cluster on cloud, when sherlock is not enough
● Tableau: easy visualization of massive data

Summary

train deepnets analyze spectra of
deepnets

visualize results
paper

