IT Infrastructure for Research:
HPCs, Cloud Computing and beyond!

Mahsa Loffi Special Thanks:

April 19th | 2021 Mark Piercy
Riccardo Murri

Total Amount of Compute Power Used for different Machine Learning Models

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
e AlphaGo Zero
1,000
e AlphaZero
100 e Neural Machine Translation
=) e Neural Architecture Search
=
c 10
= e Xception e TI7 Dota 1vi
=
e 1
©
© VGG e DeepSpeech2
® 1 ®Seq2Seq ® ResNets
Q
(@)
e - e GoogleNet
© .
o e AlexNet ® Visualizing and Understanding Conv Nets
— e Dropout
.001
.0001
eDQN
.00001
2013 2014 2015 2016 2017 2018 2019

VOLUME

¥Terabytes
* Transactions

*Records

FStructured

*Real time
*Unstructured

VELOGITY VARIETY

We are exposed to “Big Data”
We need to be prepared!

Running hundreds of Managing hundreds of
tasks CPU hours for projects

It’s too much workload management
We need to have tools!

Alpha Pattern:

analysis.py

specification of
experiment and analysis

exper anals

implementation of
experiment and analysis

Alpha

model_paths.py

locations of
trained models

datasets

datasets

net

networks

Table of Contents:

e Platforms for Scientific Computing

* High performance computing (HPC)
e Clusters
* Login Nodes
* Compute Nodes
* Why Using Clusters?
* PCsvs. HPC
« GPU
e SLURM
* Fairshare
* Cloud Computing

e ElastiCluster
e ClusterJob

* ElastiCluster plus ClusterJob Demo

Platforms for Scientific Computing

Personal Workstations Large shared batch-queuing systems Cloud Computing

Interactive use Centrally provided and administered

Complete control over both the software and ~ Usually have “Job Schedulers”
hardware Standard “commodity servers” as compute nodes

Limited computing power High-performance network interconnecting nodes

Shared file system

High Performance Computing (HPC)

 HPC: A collection of many separate servers/computers called “nodes”
* Fast interconnections
* Distributed System: components/nodes located on different networked computers

* Parallel Computing:

e Large problems are divided into smaller ones
* Simultaneously compute each smaller part

Shared
Filesystem

Cluster

Multiple racks of computers without displays or
keyboards

Have common access to a common storage
Login Nodes: Gateway to the cluster

Compute Nodes: Computations are done here!

Shared Filesystem: Presents data across all nodes

Login Nodes:

Small number of head nodes (1 or 2)

Access point for users to run jobs on the cluster

Many users simultaneously log into the head node
so no intensive jobs should run on the login node

Good for basic tasks such as:

* Uploading data

* Managing files
Checking/ Managing jobs

Submitting jobs to the scheduler

Mostly has memory limit

Compute Nodes:

Majority of computations running on these nodes

Many more CPUs compared to regular computers
(20-48)

Big RAM compared to regular computers

Some have accelerators (GPUs)

GPU nodes: Both CPU cores and GPU available for
running jobs

Why Using Clusters?

v’ Dealing with large datasets
v" Need more disc space

v" Need more memory

v’ Parallel jobs for faster results

v’ Using accelerators (GPUs)

Limitations:

v" Not recommended if the jobs run for a long time (unless check-pointed)

v Not ideal for graphical tasks

Personal Workstations vs. HPC
E—

Typical Sherlock Node:

Mac Book Pro Laptop:

24 CPUs in two sockets Intel 2.4GHz Xeon Skylake CPU

With symmetric multithreading: 48 jobs simultaneously running
About 8,192 CPUs for “owners” partition

RAM size: 192GB

GPU nodes (NVIDIA Kepler K80, K40, Volta V100)
Big memory nodes (512GB, 1.5 and 3TB RAM)

One CPU with multiple-cores

16 -64 GB RAM l‘
512 GB Solid State Disk
6 cores with symmetric multithreading: 12 jobs simultaneously ru

VERSUS

CPU

EE R EEEEEEEEEEEEEEEN
An electronic circuit inside
the computer that handles
all instructions it receives
from hardware and software
running on the computer

A component inside the
computer

A computer can have
multiple CPUs or processors

CORE

CORE

Processing unit that
receives instructions to
carry on actions based on
the instructions

Located inside the CPU

A CPU can have single or
multiple cores

Visit www.PEDIAA.com

GPU: Graphic Processing Unit

* Highly parallel structure thus more efficient than general-purpose CPUs
* Good for parallel processing of large blocks of data
 Examples of GPU use cases:

* Rendering graphics to a screen

* Running Monte Carlo simulations

* Multiplying large matrices for a machine learning algorithm

 More arithmetic logical units (ALUs) to calculate with

NOTE: Codes need to be modified to be GPU-compatible

CPU GPU

Pros
and

cons
of HPC:

Pros:

Servers are always on

Accessible from anywhere by anyone in your Pl group
Much more compute power, hundreds of CPUs

Large memory servers up to 3TB of RAM

Job Scheduler

Cons:

Learn how to use a job scheduler and the Linux shell
Need permission for some software installations
Wait in the queue for the “Job Scheduler”

v \ 4

What is SLURM? g

Simple Linux Utility Resource Management s I U I m

workload manager

a. |

workload manager

* Open source, fault-tolerant and highly scalable cluster/workload management system
* Job scheduling system for large and small Linux clusters

* You need to tell the scheduler:

* What resources you need such as # of CPUs, RAM, time, partition
* Load the modules and run your code

* Need to request as few resources as you need so your jobs pend for as small a time
as possible

* Why a management system?

 Managing and balancing the compute resources availability
* Balancing the workloads

Fairshare

* Goal of having a job queue:

* Maximize utilization of the compute power
* Ease the workload for users who do a lot of computation
* Be fair to all users

* Used by SLURM to prioritize the tasks/jobs

* The more resources you use (CPU/RAM/Time/Nodes) in a 2 week sliding window,
the lower your Fairshare score is and the more likely your jobs will wait in the queue

Fairshare (Cont.)

 Each job's priority in queue is determined by multiple factors, among them the user’s
Fairshare score

* Past usage computed based on a sliding window and progressively forgotten over time

* Stanford Sherlock uses backfill: smaller jobs can go in front of larger jobs, often
regardless of the users Fairshare factor, thus increasing clusters utilization

9 slurm
S LU R M workload manager

Architecture

ARCHITECTURE
User commands
(parial list) Controller daemons
Slurmd: Slurm daemon running on each compute node scontrol surmetd i slurmeld
pimscA 8| (AR
* Accepting and monitoring tasks sinfo
* Launching the tasks squeue ¥ Slurmdbd i, Other
- W cluster
b K|”|ng the taSkS scancel I
sacct :{’/‘} \k\ﬁams:/:
Slurmctld: Slurm central daemon running on — /’] ‘\ I

management node

| surn | sumd [samd

Compute node daemons

Information queried by several commands:

Sacct
Salloc
Sattach
Sview
Sinfo
Scontrol
etc.

Storage

Private
cloud

Mobile

®

CLOUD
COMPUTING

Applications

Embarrassingly Parallel Problems (EPP)

* Problems in which little/no effort is needed to separate the problem into a number of
parallel tasks (Naturally Parallel Algorithms)

* The opposite of EPP: Inherently Serial Problems (cannot be parallelized at all)

 Examples:
 DFT, each harmonic calculated independently
* BLAST

* Large Scale Face Recognition, etc.
* Features:
e Almost no communication between the processes

e Sub-solutions stored in disjoint memory locations
e Sub-solution computations completely independent

Cloud Computing:
|laasS

* Infrastructure as a Service (laaS)

— Virtualization of computing resources over
the internet

— Users log into the platform, create virtual
machines, install OS etc.

— Examples: AWS, GCE, Azure

Cloud Computing:
PaaS

e Various hardware and software tools are available for application
development to users over the internet

e Platform as a Service (PaaS)

* |T services available for users, accessible anywhere via a web browser

 Examples: AWS Elastic Beanstalk, Google App Engine, Google Big Table, etc.

Cloud Computing:
Saas

» Software as a Service (Saa$) g

e Utilized for businesses in the cloud market

e Utilizes the internet to deliver applications managed by a third-party
vendor to its users

* Directly through web browser, do not require any downloads or
installations on the client side

Examples: Google Workspace, Concur, Cisco WebEXx, etc.

* On-premises software deployment: Software installed directly on th
user’s local machine, users have physical control over the hardware
and the software

HPC vs. Cloud

- Good for EPP
- Good for large scale computing
- Good for EPP
- Slow connections between nodes
- Cheaper than HPC

- Run on low cost commodity

- Good for large scale computing
- Mostly outperforms Cloud (Faster)

- Requires expensive hardware
hardware

@ - No expensive HW/ SW upgrades
- No need to learn a job scheduler

- No waiting for resources not

- Fast interconnections

il

- Waiting for resources

- Learning a scheduler _ _
competing with hundreds of users

for CPUs, RAM

- As a root ,install anything you want

- Not root, can’t install some SWs

ClusterlJob

ClusterJob

* An automation system for high-throughput reproducible
computations

e Easier parallelization of tasks

* CJ builds 'reproducible' computational packages that are
easy to share with others

* Mainly written in Perl
* simple, easy-to-learn commands

e Currently supports MATLAB, Python and R

* Check pointing not necessary: Rerun the sub-problem

ClusterJob Useful Commands:

1. Write your Python/MATLAB/R code in a simple nested “for loop” format
2. Submitting jobs:
* One job: ¢j run file.py sherlock —dep Files —alloc “-p owners” —m “test”
 Multiple jobs: cj parrun file.py sherlock —dep Files —alloc “-p owners” -m “test”
3. Check the status of the jobs: cj state PID
4. Retrieve information: cj log PID

5. Gather all the results: cj reduce PID

6. Get the results in local machine: cj get PID

ElastiCluster

ElastiCluster

* Open-source software started at UZH

* Automated provisioning of virtual private clusters in the cloud

« Command line tool to create, set up and scale clusters with customized
attributes and policies hosted on cloud

* Bespoke cluster up and running with a single command

* Additional commands can scale the cluster up and down

e Supports several distros as base OS:
* Debian
* Ubuntu
* CentOS

 Run on multiple clouds:

ElastiCluster Features:

« AWS
* Google Cloud Engine
* OpenStack

* |ssue: setup time grows linearly
with the number of cluster nodes

ElastiCluster Config File

Create a cloud provider [cluster/gce] [cluster/gce/compute]
[cloud/google] cloud=google flavor=n1-standard-32
provider=google login=google #flavor=n1-highmem-8
noauth_local webserver=True setup=ansible-slurm image_id=ubuntu-1604-xenial-v20171107b
gce_client_id=">**** security_group=default accelerator_count=1
gce_client_secret="**** frontend_nodes=1 accelerator_type=nvidia-tesla-k80
gce_project_ig=> ok k* compute_nodes=1
zone=us-west1-b ssh_to=frontend

Ask for 500G of disk
[login/google] boot_disk_type=pd-standard
image_user=ubuntu boot_disk_size=500
image_user_sudo=root
image_sudo=True [cluster/gce/frontend]
user_key name=elasticluster flavor=n1-standard-32

user_key private=~/.ssh/id_rsa image_id=ubuntu-1604-xenial-v20171107b
user_key public="/.ssh/id_rsa.pub

ElastiCluster-ClusterJob Model

‘ neLiovd ’+ ElastiCluster + @

/A f')aws

python

ElastiCluster +
Clusterlob
Demo

Create

Create

Destroy

Follow the instructions on the following links to install
ClusterJob and ElastiCluster
https://clusterjob.org/documentation/

https://elasticluster.readthedocs.io/

If you have problem installing/running CJ on local machine,
create a Linux virtual machine on Mac OS and try installing
CJ again

Create 2 virtual machines on Google Cloud Platform

Connect to the clusters, list the nodes and add their IP to CJ
config file

Run a simple example on the VMs using CJ parallel
submission

Check the reduced results

Destroy the cluster when done

https://clusterjob.org/documentation/
https://clusterjob.org/documentation/

Issues regarding ElastiCluster?

e ElastiCluster source code:
e http://github.com/gc3-uzh-ch/elasticluster ElastiCluster

* Documentation:
* https://elasticluster.readthedocs.org

* Mailing-list:
e elasticluster@googlegroups.com

* Chat/ IRC channel:
e http://gitter.im/elasticluster/chat

http://github.com/gc3-uzh-ch/elasticluster%20ElastiCluster
https://elasticluster.readthedocs.org/
http://elasticluster@googlegroups.com
http://gitter.im/elasticluster/chat

Acknowledgements

Riccardo Murri Mark Piercy
University of Zurich, Switzerland Stanford Research Computing Center

@

Any questions?

