
Special Thanks:
Mark Piercy

Riccardo Murri

Total Amount of Compute Power Used for different Machine Learning Models

We are exposed to “Big Data”
We need to be prepared!

A revolution for computing in science

It’s too much workload management
We need to have tools!

Running hundreds of
tasks

Managing hundreds of
CPU hours for projects

Alpha Pattern:

Table of Contents:

• Platforms for Scientific Computing

• High performance computing (HPC)
• Clusters
• Login Nodes
• Compute Nodes
• Why Using Clusters?
• PCs vs. HPC
• GPU

• SLURM
• Fairshare

• Cloud Computing

• ElastiCluster

• ClusterJob

• ElastiCluster plus ClusterJob Demo

Platforms for Scientific Computing

Personal Workstations

Interactive use
Complete control over both the software and
hardware
Limited computing power

Large shared batch-queuing systems

Centrally provided and administered
Usually have “Job Schedulers”
Standard “commodity servers” as compute nodes
High-performance network interconnecting nodes
Shared file system

Cloud Computing

High Performance Computing (HPC)

• HPC: A collection of many separate servers/computers called “nodes”

• Fast interconnections

• Distributed System: components/nodes located on different networked computers

• Parallel Computing:

• Large problems are divided into smaller ones
• Simultaneously compute each smaller part

• Multiple racks of computers without displays or
keyboards

• Have common access to a common storage

• Login Nodes: Gateway to the cluster

• Compute Nodes: Computations are done here!

• Shared Filesystem: Presents data across all nodes

Login Nodes:

• Small number of head nodes (1 or 2)

• Access point for users to run jobs on the cluster

• Many users simultaneously log into the head node
so no intensive jobs should run on the login node

• Good for basic tasks such as:
• Uploading data
• Managing files
• Checking/ Managing jobs
• Submitting jobs to the scheduler
• Mostly has memory limit

Compute Nodes:

• Majority of computations running on these nodes

• Many more CPUs compared to regular computers
(20-48)

• Big RAM compared to regular computers

• Some have accelerators (GPUs)

• GPU nodes: Both CPU cores and GPU available for
running jobs

Why Using Clusters?

ü Dealing with large datasets

ü Need more disc space

ü Need more memory

ü Parallel jobs for faster results

ü Using accelerators (GPUs)

Limitations:
ü Not recommended if the jobs run for a long time (unless check-pointed)

ü Not ideal for graphical tasks

Personal Workstations vs. HPC

Mac Book Pro Laptop:

• One CPU with multiple-cores
• 16 -64 GB RAM
• 512 GB Solid State Disk
• 6 cores with symmetric multithreading: 12 jobs simultaneously running

Typical Sherlock Node:
• 24 CPUs in two sockets Intel 2.4GHz Xeon Skylake CPU

• With symmetric multithreading: 48 jobs simultaneously running

• About 8,192 CPUs for “owners” partition

• RAM size: 192GB
• GPU nodes (NVIDIA Kepler K80, K40, Volta V100)

• Big memory nodes (512GB, 1.5 and 3TB RAM)

• Highly parallel structure thus more efficient than general-purpose CPUs

• Good for parallel processing of large blocks of data

• Examples of GPU use cases:
• Rendering graphics to a screen
• Running Monte Carlo simulations
•Multiplying large matrices for a machine learning algorithm

• More arithmetic logical units (ALUs) to calculate with

NOTE: Codes need to be modified to be GPU-compatible

GPU: Graphic Processing Unit

Pros
and
Cons
of HPC:

Pros:
• Servers are always on
• Accessible from anywhere by anyone in your PI group
• Much more compute power, hundreds of CPUs
• Large memory servers up to 3TB of RAM
• Job Scheduler

Cons:
• Learn how to use a job scheduler and the Linux shell
• Need permission for some software installations
• Wait in the queue for the “Job Scheduler”

What is SLURM?

Simple Linux Utility Resource Management

SLURM

• Open source, fault-tolerant and highly scalable cluster/workload management system

• Job scheduling system for large and small Linux clusters

• You need to tell the scheduler:

• What resources you need such as # of CPUs, RAM, time, partition
• Load the modules and run your code
• Need to request as few resources as you need so your jobs pend for as small a time

as possible

• Why a management system?

• Managing and balancing the compute resources availability
• Balancing the workloads

Fairshare

• Goal of having a job queue:

• Maximize utilization of the compute power
• Ease the workload for users who do a lot of computation
• Be fair to all users

• Used by SLURM to prioritize the tasks/jobs

• The more resources you use (CPU/RAM/Time/Nodes) in a 2 week sliding window,
the lower your Fairshare score is and the more likely your jobs will wait in the queue

Fairshare (Cont.)

• Each job's priority in queue is determined by multiple factors, among them the user’s
Fairshare score

• Past usage computed based on a sliding window and progressively forgotten over time

• Stanford Sherlock uses backfill: smaller jobs can go in front of larger jobs, often
regardless of the users Fairshare factor, thus increasing clusters utilization

SLURM
Architecture

• Slurmd: Slurm daemon running on each compute node
• Accepting and monitoring tasks
• Launching the tasks
• Killing the tasks

• Slurmctld: Slurm central daemon running on
management node

• Information queried by several commands:

• Sacct
• Salloc
• Sattach
• Sview
• Sinfo
• Scontrol
• etc.

Embarrassingly Parallel Problems (EPP)

• Problems in which little/no effort is needed to separate the problem into a number of
parallel tasks (Naturally Parallel Algorithms)

• The opposite of EPP: Inherently Serial Problems (cannot be parallelized at all)

• Examples:
• DFT, each harmonic calculated independently
• BLAST
• Large Scale Face Recognition, etc.

• Features:

• Almost no communication between the processes
• Sub-solutions stored in disjoint memory locations
• Sub-solution computations completely independent

Cloud Computing:
IaaS

• Infrastructure as a Service (IaaS)
– Virtualization of computing resources over

the internet
– Users log into the platform, create virtual

machines, install OS etc.
– Examples: AWS, GCE, Azure

Cloud Computing:
PaaS

• Platform as a Service (PaaS)

• Various hardware and software tools are available for application
development to users over the internet

• IT services available for users, accessible anywhere via a web browser

• Examples: AWS Elastic Beanstalk, Google App Engine, Google Big Table, etc.

Cloud Computing:
SaaS

• Software as a Service (SaaS)

• Utilized for businesses in the cloud market
• Utilizes the internet to deliver applications managed by a third-party

vendor to its users
• Directly through web browser, do not require any downloads or

installations on the client side

• Examples: Google Workspace, Concur, Cisco WebEx, etc.

• On-premises software deployment: Software installed directly on the
user’s local machine, users have physical control over the hardware
and the software

HPC vs. Cloud

- Good for EPP

- Good for large scale computing

- Mostly outperforms Cloud (Faster)

- Requires expensive hardware

- Fast interconnections

- Waiting for resources

- Learning a scheduler

- Not root, can’t install some SWs

- Good for EPP

- Good for large scale computing

- Slow connections between nodes

- Cheaper than HPC

- Run on low cost commodity

hardware

- No expensive HW/ SW upgrades

- No need to learn a job scheduler

- No waiting for resources not

competing with hundreds of users

for CPUs, RAM

- As a root ,install anything you want

ClusterJob

ClusterJob
• An automation system for high-throughput reproducible

computations

• Easier parallelization of tasks

• CJ builds 'reproducible' computational packages that are
easy to share with others

• Mainly written in Perl

• simple, easy-to-learn commands

• Currently supports MATLAB, Python and R

• Check pointing not necessary: Rerun the sub-problem

ClusterJob Useful Commands:

1. Write your Python/MATLAB/R code in a simple nested “for loop” format

2. Submitting jobs:
• One job: cj run file.py sherlock –dep Files –alloc “-p owners” –m “test”
• Multiple jobs: cj parrun file.py sherlock –dep Files –alloc “-p owners” –m “test”

3. Check the status of the jobs: cj state PID

4. Retrieve information: cj log PID

5. Gather all the results: cj reduce PID

6. Get the results in local machine: cj get PID

ElastiCluster

ElastiCluster

• Open-source software started at UZH

• Automated provisioning of virtual private clusters in the cloud

• Command line tool to create, set up and scale clusters with customized
attributes and policies hosted on cloud

• Bespoke cluster up and running with a single command

• Additional commands can scale the cluster up and down

ElastiCluster Features:
• Run on multiple clouds:

• AWS
• Google Cloud Engine
• OpenStack

• Supports several distros as base OS:
• Debian
• Ubuntu
• CentOS

• Issue: setup time grows linearly
with the number of cluster nodes

ElastiCluster Config File

Create a cloud provider
[cloud/google]
provider=google
noauth_local_webserver=True
gce_client_id=*****
gce_client_secret=*****
gce_project_id=*****
zone=us-west1-b

[login/google]
image_user=ubuntu
image_user_sudo=root
image_sudo=True
user_key_name=elasticluster
user_key_private=~/.ssh/id_rsa
user_key_public=~/.ssh/id_rsa.pub

[cluster/gce]
cloud=google
login=google
setup=ansible-slurm
security_group=default
frontend_nodes=1
compute_nodes=1
ssh_to=frontend
Ask for 500G of disk
boot_disk_type=pd-standard
boot_disk_size=500

[cluster/gce/frontend]
flavor=n1-standard-32
image_id=ubuntu-1604-xenial-v20171107b

[cluster/gce/compute]
flavor=n1-standard-32
#flavor=n1-highmem-8
image_id=ubuntu-1604-xenial-v20171107b
accelerator_count=1
accelerator_type=nvidia-tesla-k80

ElastiCluster +
ClusterJob
Demo

Destroy Destroy the cluster when done

Test Check the reduced results

Run Run a simple example on the VMs using CJ parallel
submission

Connect Connect to the clusters, list the nodes and add their IP to CJ
config file

Create Create 2 virtual machines on Google Cloud Platform

Create
If you have problem installing/running CJ on local machine,
create a Linux virtual machine on Mac OS and try installing
CJ again

Install
Follow the instructions on the following links to install
ClusterJob and ElastiCluster
https://clusterjob.org/documentation/
https://elasticluster.readthedocs.io/

https://clusterjob.org/documentation/
https://clusterjob.org/documentation/

Issues regarding ElastiCluster?

• ElastiCluster source code:
• http://github.com/gc3-uzh-ch/elasticluster ElastiCluster

• Documentation:
• https://elasticluster.readthedocs.org

• Mailing-list:
• elasticluster@googlegroups.com

• Chat / IRC channel:
• http://gitter.im/elasticluster/chat

http://github.com/gc3-uzh-ch/elasticluster%20ElastiCluster
https://elasticluster.readthedocs.org/
http://elasticluster@googlegroups.com
http://gitter.im/elasticluster/chat

Acknowledgements

Riccardo Murri
University of Zurich, Switzerland

Mark Piercy
Stanford Research Computing Center

