Stats 285, Lecture 7
Painless Data Pipelining

with Kedro

Alon Kipnis
26 April 2020

1/21

Overview

¢ |ntroduction

e Pain points in Data Science experiments

o Kedro
e Features

e Examples

2/21

Motivation:

Pain Points in Data Science Experiments

features
feature
select clean extraction <
> > > V\’
==
train/val/test model train info
' o (dashboard)
split__ training

—— model weights

report
Inference

\A/
v

e Pains in data management: loading, storing, versioning

¢ Pains in data processing: compute time, writing and

maintaining code
3/21

Kedro’s Big Idea #1: Think Pipelines

data science project —> acyclic graph

data in data out
transform1 transform?2

) a

N— > > N—

—— ——

pipeline = serial transformation of datasets

e Two types of operations: e Advantages:

1. Reading/writing data e Code reusability

2. Transforming data * Easy to redirect component

4/21

Kedro’s Big Idea #2: Standardize I/0

No read/write commands

¢ Maintain a Data Catalog: B catalogyml x|
. 9
e Automatically handles: 16 bikes:
11 type: pandas.CSVDataSet
° Read/erte 12 filepath: "data/01_raw/bikes.csv"
13
14 weather:
" " 15 e: spark.SparkDataSe
* VerSIOnlng 16 ?ilg).epat::: s3a':)//you:_buzket/data/Ol_raw/weather*
17 file_format: csv
e Remote connection 8| credentials: dev.s3
. . 20 he;der:.True
® AUthent|Cat|On 21 inferSchema: True

79

e Compression

5/21

Kedro’s Big Ildea #3: Project Template

e Standardize project structure
e Standard files/folders
e Standard documentation
e Testing

v [conf
» [base
» ' local
= README.md
» [data
» [docs
& info.log
» [logs
» | notebooks
| pyproject.toml
= README.md
| setup.cfg
v [src
» [iris
| requirements.in
- | requirements.txt
% setup.py
» [tests

6/21

What is Kedro?

“Kedro is an open-source Python framework for creating
reproducible, maintainable and modular data science
code”. [Kedro docs]

‘[Kedro] borrows concepts from software engineering best-practice
and applies them to machine-learning code; applied concepts
include modularity, separation of concerns and versioning’.

7/21

What is Kedro? (Cont’d)

¢ Main features:

The Data Catalog - extendible collection of datasets and
models. Borrows arguments from Pandas, Spark, etc...

Nodes & Pipelines

Project template - Files and folders organization. Eases
collaboration and code maintenance

Isolating all hard-coded parameters in parameters.yml

Command line interface (CLI) as well as API

8/21

Example |I: Classification

Demo

kipnisal@alonks—-mbp%s pip install Kedro

kipnisal@alonks—-mbp%s kedro new —starter=pandas-iris

Name

Vv [conf

v [base
@ catalog.yml
@ logging.yml
@ parameters.yml
» [local
= README.md
. | data
B docs
. | logs

. notebooks

vV vyvyyvyy

B src

@ main.py

= README.md

® info.log
pyproject.toml

setup.cfg

B Example Iris Data — Params:example Test Data Ratio

—

f split
— Parameters B Example Train Y B Example Train X B Example TestX B Example Test Y
f train

8 Example Model

|

f predict

|

g Exampleprm/

f report

9 /21

Useful Convention in Kedro

® Node - a pure Python function that has datain ~ ~ dataout
inputs and outputs

e Dataset - an impure Python function
allowing reading/writing to storage; all
datasets are registered in the Catalog file
catalog.yml

. . : : data in data out
® Pipeline - a collection of nodes with
& node 1@ node 2

defined relationships and dependencies = — =——

S——— ——

e Parameter - hard-coded variable; all
parameters are specified in
parameters.yml

1021

Example ll: Authorship of Biblical Texts

e Goal: test an algorithm for classifying texts from the Bible in
terms of authorship

e Data: list of word-lemma-morphcode by book-chapter-verse
(https://github.com/openscriptures/morphhb)

e Select relevant parts by book-chapter-verse
e Remove prefixes and suffixes
¢ Remove some words according to their POS

¢ Inference: e Reporting:
e Train model e Accuracy per text
e TJest model e Figures

e Predict
11/21

https://github.com/openscriptures/morphhb

Authorship of Biblical Texts (cont’d)

Demo

B 0shb Raw
f osHa_reader
= Params:preprocessing B 0shb Parsed
I preprocess
8 Topics Data B 0ataProco

I topks
B DataProct
B -
= Authe = — Author =
I fier_by_author S build_vocab S fiter_by_author
8 Vocabulary
f coaversion_vocab
v
= Params:sim Full = Params:bootstrapping 8 o = Panams:model B vocabulary B Oata Filterad
L
// ,.\
—— ===
v v
S sim_ful I sen_full S bulld_model f Cross vasdation
B simFull Res B sim Full fes Bs = Params:report 8 Model B Reduced Vocabulary0 B SimRescy

({L £ Roport Sim Full I plot_sim f add_stats f comppross f plot_sim_ful f Report Table Full f model_predict f translate_vocab

| [| }

S report_table_known £ report_table_unknown f tustrate

B Sim Full Report B Sim Full Res Bs Stats B Probs B Sim Table Report B SimRes B Reduced Vocabulary
- \ {!

f plot_sim_8s f Report Probs f plot_sim_tull_8s f plot_sim F report_table_known f roport_table_unknown

l —\r

8 Probs Table 8 sim 8 sm

12 /21

Kedro’s Data Catalog

APl for datasets

e Manages the loadings and savings of your data:
e Standardized |/O operatins
e |ntegrates with pandas, spark, SQLAlchemy, Cloud...
e \ersioning capabilities

no read/write/databse access/authentication
command in your main code

when in doubt, write it out

Demo data catalog

13/21

Engineering Convention

Raw

Intermediate

[NON B® data

Name

>
>
>
>
>
>
>
>

7 01_raw Primary
.| 02_intermediate

. 03_primary

.| 04_feature

1 05_model_input Feature
.| 06_models

. 07_model_output

.| 08_reporting Model input

Models

Model output

Reporting

Initial start of the pipeline, containing the sourced data model(s) that should never be
changed, it forms your single source of truth to work from. These data models are typically
un-typed in most cases e.g. csv, but this will vary from case to case.

Optional data model(s), which are introduced to type your raw data model(s), e.g. converting
string based values into their current typed representation.

Domain specific data model(s) containing cleansed, transformed and wrangled data from
either raw or intermediate, which forms your layer that you input into your feature
engineering.

Analytics specific data model(s) containing a set of features defined against
the primary data, which are grouped by feature area of analysis and stored against a
common dimension.

Analytics specific data model(s) containing all feature data against a common dimension
and in the case of live projects against an analytics run date to ensure that you track the
historical changes of the features over time.

Stored, serialised pre-trained machine learning models.

Analytics specific data model(s) containing the results generated by the model based on
the model input data.

Reporting data model(s) that are used to combine a set

of primary, feature, model input and model output data used to drive the dashboard and the views
constructed. It encapsulates and removes the need to define any blending or joining of data, improve
performance and replacement of presentation layer without having to redefine the data models.

https://kedro.readthedocs.io/en/0.14.3/06_resources/01_fag.html#what-is-data-engineering-convention 14/21

Kedro and CJ

 Versionize all output dataset

At each iteration:

1. modify parameters.yml

2. run pipeline

15/21

Kedro and CJ (cont’d)

import KedroSession

for x in X :
for y in Y :
for z in Z :
with open(parameters.yaml) as f :
f.write(parms_file_str(x,y,z))
with KedroSession.create('atomic_xpr') as session:
session.run()

base_file_path = 'conf/base/parameters.yml’ "B catalogyml) No Selection
new_file_path = 'conf/local/parameters.yml’ . .
61 sim_report:
def params_file str(x,y,z) : 62 type: pandas.CSVDataSet
63 filepath: data/08_reporting/report.csv
with open(base_file_path) as f : l 64 versioned: true
params_str = f.read() —

params_str += '\n'

params_str += f'x: {x}\n'
params_str += f'y: {y}\n'
params_str += f'z: {z}\n'

with open(new_file_path, 'w') as fout :
fout.write(params_str)

16/21

Other Features

e \/ersatile CLI
* Flexible Deployment: supports .egg or .whl packaging

e Kedro-Docker: plugin to package Kedro projects in Docker
containers

e Documentation (https://kedro.readthedocs.io/)

17/21

Kedro programing framework for

data science projects

Pipelining data science project —> acyclic graph

API for datasets | no read/write commands

Data Catalog
when In doubt, write it out

eases collaboration with
others and your future self

UL RielnEWel @ axtandible and modifiable

Project Template

18/21

Resources

* Kedro’s Documentation (kedro.readthedocs.io)

" europython

Jul 23 - 26 2020 l Online

Writing and Scaling Collaborative
Data Pipelines with Kedro

Tam-Sanh Nguyen

Kedro: A New Tool For Data
Science

A new Python library for production-ready data pipelines

‘.D Jo Stichbury Jun 4,2019 - 10 min read

19/21

http://kedro.readthedocs.io

