
/211

26 April 2020

Stats 285, Lecture 7
Painless Data Pipelining

with Kedro
Alon Kipnis

/21

Overview

2

• Introduction

• Pain points in Data Science experiments

• Kedro

• Features

• Examples

/213

Motivation:
Pain Points in Data Science Experiments

• Pains in data management: loading, storing, versioning

• Pains in data processing: compute time, writing and
maintaining code

raw

data features

train

validation

test

train info

(dashboard)

model weights
report

select clean
feature

extraction

 train/val/test

split

model

training

Inference

/214

Kedro’s Big Idea #1: Think Pipelines

pipeline = serial transformation of datasets

data in data out
transform1 transform2

• Two types of operations:

1. Reading/writing data

2. Transforming data

• Advantages:
• Code reusability

• Easy to redirect component

data science project —> acyclic graph

/215

Kedro’s Big Idea #2: Standardize I/O
No read/write commands

• Maintain a Data Catalog:

• Automatically handles:

• Read/Write

• Versioning

• Remote connection

• Authentication

• Compression

• …

/216

Kedro’s Big Idea #3: Project Template

• Standardize project structure

• Standard files/folders

• Standard documentation

• Testing

/217

What is Kedro?

“Kedro is an open-source Python framework for creating
reproducible, maintainable and modular data science
code“. [Kedro docs]

“[Kedro] borrows concepts from software engineering best-practice
and applies them to machine-learning code; applied concepts
include modularity, separation of concerns and versioning”.

/218

What is Kedro? (Cont’d)

• Main features:

• The Data Catalog - extendible collection of datasets and
models. Borrows arguments from Pandas, Spark, etc…

• Nodes & Pipelines

• Project template - Files and folders organization. Eases
collaboration and code maintenance

• Isolating all hard-coded parameters in parameters.yml

• Command line interface (CLI) as well as API

/219

Example I: Classification
kipnisal@alonks-mbp% pip install Kedro
kipnisal@alonks-mbp% kedro new —-starter=pandas-iris

Demo

/2110

Useful Convention in Kedro
• Node - a pure Python function that has

inputs and outputs

• Dataset - an impure Python function
allowing reading/writing to storage; all
datasets are registered in the Catalog file
catalog.yml

• Pipeline - a collection of nodes with
defined relationships and dependencies

• Parameter - hard-coded variable; all
parameters are specified in
parameters.yml

data in data outnode

data in data out
node 2node 1

/21

Example II: Authorship of Biblical Texts

• Inference:
• Train model

• Test model

• Predict
11

• Goal: test an algorithm for classifying texts from the Bible in
terms of authorship

• Data: list of word-lemma-morphcode by book-chapter-verse
(https://github.com/openscriptures/morphhb)

• Select relevant parts by book-chapter-verse

• Remove prefixes and suffixes

• Remove some words according to their POS

• Reporting:
• Accuracy per text

• Figures

https://github.com/openscriptures/morphhb

/2112

Authorship of Biblical Texts (cont’d)

Demo

/2113

Kedro’s Data Catalog
API for datasets

• Manages the loadings and savings of your data:

• Standardized I/O operatins

• Integrates with pandas, spark, SQLAlchemy, Cloud…

• Versioning capabilities

no read/write/databse access/authentication
 command in your main code

Demo data catalog

when in doubt, write it out

/2114

Data Engineering Convention

https://kedro.readthedocs.io/en/0.14.3/06_resources/01_faq.html#what-is-data-engineering-convention

Raw
Initial start of the pipeline, containing the sourced data model(s) that should never be
changed, it forms your single source of truth to work from. These data models are typically
un-typed in most cases e.g. csv, but this will vary from case to case.

Intermediate Optional data model(s), which are introduced to type your raw data model(s), e.g. converting
string based values into their current typed representation.

Primary
Domain specific data model(s) containing cleansed, transformed and wrangled data from
either raw or intermediate, which forms your layer that you input into your feature
engineering.

Feature
Analytics specific data model(s) containing a set of features defined against
the primary data, which are grouped by feature area of analysis and stored against a
common dimension.

Model input
Analytics specific data model(s) containing all feature data against a common dimension
and in the case of live projects against an analytics run date to ensure that you track the
historical changes of the features over time.

Models Stored, serialised pre-trained machine learning models.

Model output Analytics specific data model(s) containing the results generated by the model based on
the model input data.

Reporting
Reporting data model(s) that are used to combine a set
of primary, feature, model input and model output data used to drive the dashboard and the views
constructed. It encapsulates and removes the need to define any blending or joining of data, improve
performance and replacement of presentation layer without having to redefine the data models.

/21

Kedro and CJ

15

• Versionize all output dataset

• At each iteration:

1. modify parameters.yml

2. run pipeline

/2116

Kedro and CJ (cont’d)

/21

Other Features

17

• Flexible Deployment: supports .egg or .whl packaging

• Kedro-Docker: plugin to package Kedro projects in Docker
containers

• Documentation (https://kedro.readthedocs.io/)

• Versatile CLI

/2118

Recap

data science project —> acyclic graph• Pipelining

• Data Catalog
API for datasets no read/write commands

programing framework for
 data science projects

• Kedro

• Project Template eases collaboration with
 others and your future self

• Python framework extendible and modifiable

when in doubt, write it out

/2119

Resources
• Kedro’s Documentation (kedro.readthedocs.io)

http://kedro.readthedocs.io

