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Exploratory data analysis

From Wikipedia, the free encyclopedia

In statistics, exploratory data analysis (EDA) is an approach
to analyzing data sets to summarize their main characteristics,
often with visual methods. A statistical model can be used or
not, but primarily EDA is for seeing what the data can tell us
beyond the formal modeling or hypothesis testing task.
Exploratory data analysis was promoted by John Tukey to

encourage statisticians to explore the data, and possibly
formulate hypotheses that could lead to new data collection

and experiments.
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Ambitious Data Science requires massive computational experimentation; the entry ticket for a solid
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State of Machine Overwew

Lea rn i ng a nd Data For the fourth year, Kaggle surveyed its community of data
- enthusiasts to share trends within a quickly growing field.
SClence 2 020 Based on responses from 20,036 Kaggle members,

we've created this report focused on the 13% (2,675
respondents) who are currently employed as data
scientists.

We can see a clear picture of what is common in the
community but also the diverse attributes of its members.

https://www.kaggle.com/kaggle-survey-2020

Enterprise Executive Summary Report
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MACHINE LEARNING FRAMEWORK USAGE

Which of the following machine learning frameworks do you use on a regular basis?

Xgboost 48.4%
e Scikit-learn
. Tensaflow
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Q27-A

Do you use any of the following cloud computing products on a regular basis?

No / None
Other

https://www.kaggle.com/c/kaggle-survey-2020/data

Amazon EC2

Google Cloud
Compute Engine

AWS Lambda

No/None

Azure Cloud Services

Amazon Elastic
Container Service

Microsoft Azure
Container Instances

Google Cloud Functions

Google Cloud App
Engine

Azure Functions

Google Cloud Run

Other

o
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Q32

Which of the following business intelligence tools do you use most often?®

» Amazon QuickSight
» Microsoft Power Bl
» Google Data Studio
» Looker

» Tableau

» Salesforce

» Einstein Analytics

» Qlik

» Domo

» TIBCO Spotfire

» Alteryx

» Sisense

» SAP Analytics Cloud

| very specifiC....

» Other

Answers are al

https://www.kaggle.com/c/kaggle-survey-2020/data

DATA SCIENTIST USAGE OF BUSINESS INTELLIGENCE TOOLS

Microsoft PowerB

Google Data Studio

Other

Qlik
Amazon QuickSight I 2.9%
Salesforce I 2.8%
Looker I 2.5%
Alteryx I 21%
SAP Analytics Cloud I 2%
TIBCO Spotfire I 1.4%
Sisense I 1.2%
Einstein Analytics | 0.9%
Domo | 0.7%
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What tools are used at work?

Python was the most commonly used data analysis tool across employed data

scientists overall, but more Statisticians are still loyal to R.

Company Size ¥ || Industry v || Job Title

A

Jupyter notebooks 40.3%

TensorFlow 28.4%

Amazon Web services 23.5%

Unix shell / awk

NoSQL 19.2%

MATLAB/ Octave
Java
Hadoop/ Hive/Pig
Spark / MLlib

Microsoft Excel Data Mining 13.7%

7,955 responses

Only displaying the top 15 answers. There are 38 answers not shown.
@ View code in Kaggle Kernels
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What barriers are faced at work?

Ah, dirty data, we meet again. It looks like, in general, dirty data is the most common
problem for workers in the data science realm. One exception are those necessarily
meticulous Database Engineers . After dirty data, company politics, lack of
management and/or financial support are the real thorns in a data scientist’s side.

Company Sizey || Industry v || Job Title =

0% 10% 20% 30% 40%

-Dirty data 49.4% ’

Lack of data scie

Lack of management/financial 37.2%
support
Lack of clear question to answer 30.4%
Data unavailable or difficult to 30.2%
access
Results not used by decision makers 24.3%
Explaining data science to others 22.0%
Privacy issues 19.8%
Lack of domain expert input 19.6%
Can't afford data science team 17.8%
Multiple ad- hoc environments 17.5%
Limitations of tools 16.5%
Need to coordinate with IT 16.3%
Expectations of project impact 15.8%
Integrating findings into decisions 13.6%

7,376 responses
Only displaying the top 15 answers. There are 7 answers not shown.

@ View code in Kaggle Kernels




Let’s See...

DATA SCIENTIST
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USAGE OF BUSINESS INTELLIGENCE TOOLS
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What tools are used at work?

Python was the most commonly used data analysis tool across employed data

scientists overall, but more Statisticians are still loyal to R.

Company Size ¥ || Industry ¥ || Job Title :
0% 20% 40% 60%
Python 76.3%
R 59.2%

sat
Jupyter notebooks
TensorFlow
Amazon Web services
Unix shell / awk
Tableau
o/
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Hadoop/ Hive/Pig
Spark / MLlib
Microsoft Excel Data Mining

7,955 responses
Only displaying the top 15 answers. There are 38 answers not shown.
@ View code in Kaggle Kernels
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Obstacles in code-based data analysis

chooseMultiple = function(question, filteredData = cleanData){

filteredData %>%
. . . & # Remove any rows where the respondent didn't answer the question
filter(!'UQ(sym(question)) == "") %>%
* Reading/cleaning/aggregating data =GRt rasi i
42 select(question) %>%
. . . # Add a column with the initial number of respondents to question
 Learning/deciphering syntax nutate totalCount = n()) %
45 # Split multiple answers apart at the comma, but ignore commas inside parentheses
mutate(selections = strsplit(as.character(UQ(sym(question))),
"\\([*) 1+, (*SKIP) (*FAIL)|,\\s*', perl = TRUE)) %>%
# Split answers are now nested, need to unnest them
unnest(selections) %>%
# Group by the selected responses to the question
group_by(selections) %>%
# Count how many respondents selected each option
summarise(totalCount = max(totalCount),
count = n()) %>%
meticulous [DABRESERRREaR). After dirty data, cormpany politics, lack of # Calculate what percent of respondents selected each option
management and/or financial support are the real thorns in a data scientist's side. L mutate(percent — (count / totalcount) * T@@) %>%
Gompany Siz ) (Tndustry %) (JobTle ¥ 7 # Arrange the counts in descending order
arrange(desc(count))

=
(S, 00 S ) B~
® O

W N = O

What barriers are faced at work?

T
B

Ah, dirty data, we meet again. It looks like, in general, dirty data is the most common
problem for workers in the data science realm. One exception are those necessarily

0% 10% 20% 30% 40%
Dirty data 49.4%
Lack of data science talent 41.6%
Lack of management/financial 37.2%
support -
Lack of clear question to answer 30.4%
Data unavailable or difficult to 30.2%
access .

# Filter the data

Results not used by decision makers [N ENETET) 256  filterBarriers <- workLife %>%
Explaining data science to others (NEZT7 # Remove blank responses on employment question
Privacy issues (TS filter(!EmploymentStatus == "") %>%
Lack of domain expert input. (EENECYZ) # Keep only entries that indicated that they use code to analyze data at work
Can'tafford data science team o < . " " o
== >
Multiple ad- hoc environments ([ EZ2 fllter(COdewrlter Yes.) %% ” "
Liiatons o twols [ 7557 # Keep only entries that included one of the above "employed" statuses
Need to coordinate with IT 16.3% filter(grepl(paste(employed, collapse = "|"), EmploymentStatus))
Expectations of project impact .
Integrating findings into decisions (XY # Using the filtered data, run chooseMultiple() function

7,376 responses 265 chooseMultiple("WorkChallengesSelect"”, filterBarriers)

Only displaying the top 15 answers. Tk tchown

R (¢3) View code in Kaggle Kernel




Obstacles in code-based data analysis

* Reading/cleaning/aggregating data -

Dirty data
[} [} [} Lack of data science talent in the organization
. Le a r n I n g/d e C I p h e rl n g Sy n ta X Company politics / Lack of management/financial support for a data science team
The lack of a clear question to be answering or a clear direction to go in with the available data

Unavailability of/difficult access to data

L] L]
* Code and deliverable mismatch e
Explaining data science to others

Privacy issues
Lack of significant domain expert input

Organization is small and cannot afford a data science team

What barriers are faced at work?

Ah, dirty data, we meet again. It looks like, in general, dirty data is the most common
problem for workers in the data science realm. One exception are those necessarily
meticulous Database Engineers . After dirty data, company politics, lack of
management and/or financial support are the real thorns in a data scientist’s side.

. X totalCount  co... percent
Company Size# | [ Industry +)( Job Title 0 4
7376 3641 49.362798
0% 10% 20% 30% 40%
bty ot (Y 7 7) 7376 3067 41580803
Lack of data science talent (T 7376 2746 37.228850

Lack of management/financial 37.2%
support -

7376 2242 30.395879
Lack of clear question to answer

Data unavailable or difficult to 7376 2230 30.233189
Results not used by decision makers 7376 1796 24.349241
Explaining data science to others 7376 1622  21.990239
Privacy issues
Lackof domain expert input 7376 1460 19.793926
Can'tafford data science team 7376 1444 19.577007
Multiple ad- hoc environments 7376 1316 17.841649
Limitations of tools
Need to coordinate with IT 16.3%

Expectations of project impact -10 of
Integrating findings into decisions 13.6%

7,376 responses

Tt — aot chown

R (¢3) View code in Kaggle Kernel

Only displaying the top 15 ans
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Obstacles in code-based data analysis

# Plot

[ Reading/C|ea ning/aggregating data ggplot(challengeTaTizg::;;y?;esix = frequency, y = count, fill = response.y)) +

geom_bar(stat =
facet_wrap(~response.y) +

* Learning/deciphering syntax T s m i

theme(axis.text.x = element_text(angle = 90,
vjust 4ok,

* Code and deliverable mismatch vust - 0.
# Since the names are often too long to be displayed well in this figure, print

¢ FO r m atti n g O u t p u t levels(as.factor(challengeNamesCharS$response.y))

What barriers are faced at work?

Ah, dirty data, we meet again. It looks like, in general, dirty data is the most common inagement/financial su Its not used by busines seful for scientific anal lties In deployment/sc Dirty data
problem for workers in the data science realm. One exception are those necessarily 1500 -
meticulous Database Engineers . After dirty data, company politics, lack of 1000 - T
management and/or financial support are the real thorns in a data scientist’s side. 508 : — — | | e -
Company Size# || Indi y + Job Title
ompany Sizcs { Industry 1 Ining data science to ¢ | prefer not to say  1gs Into organization's  science talent in the « uy useful datasets fror
1500 -
) 1000- |
0% % 30% 40% d
500 - _ . = _ B - e — . —

oiry data
Lack of data science talent 41.6%
Lack of management/financial 37.2%
support -
Lack of clear question to answer 30.4%

significant domain exp 1e state of the art inm  Limitations of tools  lons about the potentiz :ed to coordinate with

00 emlles  emem . e mm — . —

Number of times a response was selected
)
o
o

Expectations of project impact
Integrating findings into decisions 13.6%

Dataunavaible r i
access
Results not used by decision makers all and cannot afford a Other Privacy Issues sclence solution up to elopment environment
Explaining data science to others 15001
Privacy issues 500- ‘
- 1 0 ' ' 0 0 [ 0 ' ' ' 0
Lack of domain expert input > 9 £ @ > 8 g @ > a8 £ 9@
) swering, or a clear dire bility of/difficult access & ¢ £ E e 2 2 E o 2 2 E
Can'tafford data science team 5 E § = 5 E § = 5 E § =
1500 - o [} b o 1o} 2 o o} 2
Multiple ad- hoc environments 1000 - g = g = g =
500 - 5 5 b
Limitations of tools 0- @ - @ - @ =
o o 3 3 3
Need to coordinate with IT 16.3% s & § 5 é 8 s s s
T = 5 s £ 5
c 3 © c 3 ©
£ £
[=] [=]
(2] 2]

Most of the time
Most of the time -

7,376 responses
Only displaying the top 15 answers. Tk ot shown.
frequency
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Obstacles in code-based data analysis

Reading/cleaning/aggregating data
Learning/deciphering syntax
Code and deliverable mismatch

Formatting output

What barriers are faced at work?

Ah, dirty data, we meet again. It looks like, in general, dirty data is the most common
problem for workers in the data science realm. One exception are those necessarily
meticulous Database Engineers . After dirty data, company politics, lack of
management and/or financial support are the real thorns in a data scientist’s side.

Company Sizc# | Industry %) [ Job Title

0% 10% 20% 30% 40%

oiry data
Lack of data science talent 41.6%
Lack of management/financial 37.2%
support =
Lack of clear question to answer 30.4%
Data unavailable or difficult to 30.2%
access .
Results not used by decision makers 24.3%
Explaining data science to others 22.0%
Privacy issues 19.8%
Lack of domain expert input
Can't afford data science team 17.8%
Multiple ad- hoc environments 17.5%
Limitations of tools 16.5%
Need to coordinate with IT 16.3%
Expectations of project impact
Integrating findings into decisions 13.6%

Only displaying the top 1

R (¢3) View code in Kaggle Kernel

# Plot
ggplot(challengeNamesChar, aes(x
geom_bar(stat = "identity") +

facet_wrap(~response.y) +
ylab("Number of times a respag
theme(legend.position="n

theme(axis.text.x

levels(as.factor(cha

5001 -

inagement/fin y data
1500 -
500 -
0- -
Ining data science tc eful datasets fror
1500 -

is figure, print

potentic :ed to coordinate with

50" oanles s . e e o N —

0-

1500 -
1000 -
500 -

0-

Number of times a response was selected
)
o
o

1500 -
1000 -
500 -

0-

Rarely -
Sometimes -‘
Often -
Rarely -
Sometimes -

Most of the time

all and cannot afford a Other

swering, or a clear dire bility of/difficult access

Privacy Issues science solution up to elopment environment

Rarely -
Sometimes -
Often -

Most of the time -
Rarely -
Sometimes -
Often -

Most of the time -
Rarely -
Sometimes -
Often -

Most of the time -

Often -

Most of the time -

frequency



Misalignment of goals

Data analysis for dissemination Data analysis for exploration

* Flexible framework for * Fast manipulation of data
implementing complex * Intuitive interface
calculations

, , , * Facilitates the efficient
* Concise representations like discovery of insights.

scripts and functions

e Facilitates the efficient

communication of insights. +-I:|' +ab | edadu
+.+

R N
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Data Science Challenge

Challenge Employer Industry

Dirty dato | 0.4936 [ -]
Lack of data science talen.. | NN, 04158
Company politics / Lack of ... | I, 03723 Current Job Title Select
The lack of a clear questio... | NN 03040 Lan -]

Unavailability of/difficult . | 03021
Data Science results not u... |, 2435
Explaining data science to... |, o.2199

Privacy issues [NREREM 0.1979
D e m O 1 : Lack of significant domain.. | N RHREREEEE ©.1958
. organization is small and .. | NG N NNEGNGTNEEEEE 01754
Data SC | e n Ce Team using multiple ad-ho.. | NEGEGcTcNcNGNGGEEEEEEEE 01752

Limitations of tools | NEEEEEEEE 0.1646
Need to coordinate with IT _ 0.1628

Challen ges Maintaining responsibie c.. |NNNEEG—_—S O.1575

Inability to integrate findi.. | NN N R O.1356

Lack of funds to buy usefu.. | N REEREE ©.1315

Difficulties in deployment.. | N N N N NN 0.1155

Scaling data science soluti.. | N RN HIINE 0.1152

Limitations in the state of.. | N I ©.1066

Did not instrument data u.. || | NI o.08%6

I prefer not to say | 0.0664
other [ 0.0397

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Percent Response
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RESEARCH ARTICLE

Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan, (= X. Y. Han, and David L. Donoho

+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117
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Fig. 2. Train class means become equinorm. The formatting and technical details are as described in Section 3. In each array cell, the vertical axis
shows the coefficient of variation of the centered class-mean norms as well as the network classifiers norms. In particular, the blue lines show
Stdc(l| e — pgll,)/Ava (|| e — 16ll,) where {u } are the class means of the last-layer activations of the training data and p; is the corresponding train
global mean; the orange lines show Std.(||wc||,)/Avg.(||wc||,) where w is the last-layer classifier of the cth class. As training progresses, the coefficients of
variation of both class means and classifiers decrease.
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Fig. 3. Classifiers and train class means approach equiangularity. The formatting and technical details are as described in Section 3. In each array cell, the
vertical axis shows the SD of the cosines between pairs of centered class means and classifiers across all distinct pairs of classes ¢ and ¢’. Mathematically,
htt PS. / / pu rl sta nfo rd ed u / n g8 12mz4543 denote c0s,.(c, ') = (1, — pgr e — 1)/l — gl It — B, and cosw(c, ) = (We, W) /(IWell, [l W, I,) where {wc}S_y, {1}, and pg are as in

b h : Fig. 2. We measure Std, ./, (cos,.(c, c’)) (blue) and Std,, o/ c(cosw(c, ¢’)) (orange). As training progresses, the SDs of the cosines approach zero, indicating
equiangularity.
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